分析 (1)作直徑BE,連接OD、DE,如圖,利用圓周角定理得到∠BDE=90°,∠E=∠BAD,由于∠BAD=∠BDC.則∠E=∠BDC,加上∠DBO=∠BDO,則∠BDC+∠BDO=90°,然后根據(jù)切線的判定定理可得到CD是⊙O的切線;
(2)先根據(jù)直角斜邊上中線性質(zhì)得DB=OB=OD,則△OBD為等邊三角形,所以S△OBD=$\frac{\sqrt{3}}{4}$,∠BOD=60°,再作DF⊥OA于F,如圖,則DF=$\frac{1}{2}$OD=$\frac{1}{2}$,所以S△ODA=$\frac{1}{4}$,然后利用四邊形AOBD的面積=S△OBD+S△ODA進(jìn)行計(jì)算即可.
解答 (1)證明:作直徑BE,連接OD、DE,如圖,
∵BE為直徑,
∴∠BDE=90°,
∴∠DBE+∠E=90°,
∵∠E=∠BAD,∠BAD=∠BDC.
∴∠E=∠BDC,
∵OB=OD,
∴∠DBO=∠BDO,
∴∠BDC+∠BDO=90°,即∠CDO=90°,
∴OD⊥CD,![]()
∴CD是⊙O的切線;
(2)解:∵OB=CB,
∴BD為直角△ODC的斜邊OC的中線,
∴DB=OB=OD,
∴△OBD為等邊三角形,
∴S△OBD=$\frac{\sqrt{3}}{4}$OB2=$\frac{\sqrt{3}}{4}$,∠BOD=60°,
∵OA⊥OB,
∴∠AOD=30°,
作DF⊥OA于F,如圖,
在Rt△ODF中,DF=$\frac{1}{2}$OD=$\frac{1}{2}$,
∴S△ODA=$\frac{1}{2}$•1•$\frac{1}{2}$=$\frac{1}{4}$,
∴四邊形AOBD的面積=S△OBD+S△ODA=$\frac{\sqrt{3}}{4}$+$\frac{1}{4}$=$\frac{\sqrt{3}+1}{4}$.
點(diǎn)評(píng) 本題考查了切線的判定與性質(zhì):圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑;經(jīng)過(guò)半徑的外端且垂直于這條半徑的直線是圓的切線.判定切線時(shí)“連圓心和直線與圓的公共點(diǎn)”或“過(guò)圓心作這條直線的垂線”.也考查了圓周角定理.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | a10 | B. | -a10 | C. | a12 | D. | -a12 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 13cm | B. | 6cm | C. | 6cm或26cm | D. | 3cm或13cm |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\left\{\begin{array}{l}x=2\\ y=1\end{array}\right.$ | B. | $\left\{\begin{array}{l}x=2\\ y=-1\end{array}\right.$ | C. | $\left\{\begin{array}{l}x=4\\ y=1\end{array}\right.$ | D. | $\left\{\begin{array}{l}x=4\\ y=-1\end{array}\right.$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | β-9α=1 | B. | 9α+4β=1 | C. | 3α+2β=1 | D. | 4β-9α+1=0 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com