分析 根據(jù)(1-$\frac{1}{{2}^{2}}$)=$\frac{1}{2}•\frac{3}{2}$=$\frac{3}{4}$;(1$-\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)=$\frac{1}{2}•\frac{3}{2}•\frac{2}{3}•\frac{4}{3}$=$\frac{1}{2}•\frac{4}{3}=\frac{2}{3}$;(1-$\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)(1-$\frac{1}{{4}^{2}}$)=$\frac{1}{2}•\frac{3}{2}•\frac{2}{3}•\frac{4}{3}•\frac{3}{4}\frac{7}{12}=\frac{1}{2}•\frac{5}{4}=\frac{5}{8}$;(1-$\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)(1-$\frac{1}{{4}^{2}}$)(1-$\frac{1}{{5}^{2}}$)=$\frac{1}{2}•\frac{3}{2}•\frac{2}{3}•\frac{4}{3}•\frac{3}{4}•\frac{5}{4}•\frac{4}{5}•\frac{6}{5}=\frac{1}{2}•\frac{6}{5}=\frac{3}{5}$;可得(1-$\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)(1-$\frac{1}{{4}^{2}}$)(1-$\frac{1}{{5}^{2}}$)(1-$\frac{1}{{6}^{2}}$)=$\frac{1}{2}$$•\frac{7}{6}$=$\frac{7}{12}$;(1-$\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)(1-$\frac{1}{{4}^{2}}$)(1-$\frac{1}{{5}^{2}}$)…(1-$\frac{1}{{n}^{2}}$)=$\frac{1}{2}•\frac{n+1}{n}=\frac{n+1}{2n}$,據(jù)此解答即可.
解答 解:∵(1-$\frac{1}{{2}^{2}}$)=$\frac{1}{2}•\frac{3}{2}$=$\frac{3}{4}$;
(1$-\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)=$\frac{1}{2}•\frac{3}{2}•\frac{2}{3}•\frac{4}{3}$=$\frac{1}{2}•\frac{4}{3}=\frac{2}{3}$;
(1-$\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)(1-$\frac{1}{{4}^{2}}$)=$\frac{1}{2}•\frac{3}{2}•\frac{2}{3}•\frac{4}{3}•\frac{3}{4}\frac{7}{12}=\frac{1}{2}•\frac{5}{4}=\frac{5}{8}$;
(1-$\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)(1-$\frac{1}{{4}^{2}}$)(1-$\frac{1}{{5}^{2}}$)=$\frac{1}{2}•\frac{3}{2}•\frac{2}{3}•\frac{4}{3}•\frac{3}{4}•\frac{5}{4}•\frac{4}{5}•\frac{6}{5}=\frac{1}{2}•\frac{6}{5}=\frac{3}{5}$;
∴(1-$\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)(1-$\frac{1}{{4}^{2}}$)(1-$\frac{1}{{5}^{2}}$)(1-$\frac{1}{{6}^{2}}$)=$\frac{1}{2}$$•\frac{7}{6}$=$\frac{7}{12}$;
∴(1-$\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)(1-$\frac{1}{{4}^{2}}$)(1-$\frac{1}{{5}^{2}}$)…(1-$\frac{1}{{n}^{2}}$)=$\frac{1}{2}•\frac{n+1}{n}=\frac{n+1}{2n}$.
故答案為:$\frac{7}{12}、\frac{n+1}{2n}$.
點評 此題主要考查了探尋數(shù)列規(guī)律問題,認(rèn)真觀察、仔細(xì)思考,善用聯(lián)想是解決這類問題的方法,注意觀察總結(jié)出規(guī)律,并能正確的應(yīng)用規(guī)律,解答此題的關(guān)鍵是判斷出:(1-$\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)(1-$\frac{1}{{4}^{2}}$)(1-$\frac{1}{{5}^{2}}$)…(1-$\frac{1}{{n}^{2}}$)=$\frac{1}{2}•\frac{n+1}{n}=\frac{n+1}{2n}$.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | ①②④⑤ | B. | ②③④⑤ | C. | ②④⑤ | D. | ①③⑤ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com