分析 (1)由Rt△ABC中,∠C=90°,⊙O切BC于D,易證得AC∥OD,繼而證得AD平分∠CAB.
(2)如圖,連接ED,根據(jù)(1)中AC∥OD和菱形的判定與性質(zhì)得到四邊形AEDO是菱形,則△AEM≌△DMO,則圖中陰影部分的面積=扇形EOD的面積.
解答
(1)證明:∵⊙O切BC于D,
∴OD⊥BC,
∵AC⊥BC,
∴AC∥OD,
∴∠CAD=∠ADO,
∵OA=OD,
∴∠OAD=∠ADO,
∴∠OAD=∠CAD,
即AD平分∠CAB;
(2)設(shè)EO與AD交于點(diǎn)M,連接ED.
∵∠BAC=60°,OA=OE,
∴△AEO是等邊三角形,
∴AE=OA,∠AOE=60°,
∴AE=AO=OD,
又由(1)知,AC∥OD即AE∥OD,
∴四邊形AEDO是菱形,則△AEM≌△DMO,∠EOD=60°,
∴S△AEM=S△DMO,
∴S陰影=S扇形EOD=$\frac{60π×{2}^{2}}{360}$=$\frac{2π}{3}$.
點(diǎn)評(píng) 此題考查了切線的性質(zhì)、等腰三角形的性質(zhì).此題難度適中,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | a2+a2=2a4 | B. | (-a2b)3=-a6b3 | C. | a2•a3=a6 | D. | a8÷a2=a4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2015x2015 | B. | 4029x2014 | C. | 4029x2015 | D. | 4031x2015 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com