| A. | $\frac{15}{4}$ | B. | 2 | C. | $\frac{15}{8}$ | D. | $\frac{3}{2}$ |
分析 首先根據(jù)翻折變換的性質(zhì),可得AD=AB=10,DE=BE;然后設(shè)點E的坐標(biāo)是(10,b),在Rt△CDE中,根據(jù)勾股定理,求出CE的長度,進而求出k的值是多少;最后用k的值除以點F的縱坐標(biāo),求出線段AF的長為多少即可.
解答 解:∵△ABE沿AE折疊,點B剛好與OC邊上點D重合,
∴AD=AB=10,DE=BE,
∵AO=8,AD=10,
∴OD=$\sqrt{{10}^{2}{-8}^{2}}=6$,CD=10-6=4,
設(shè)點E的坐標(biāo)是(10,b),
則CE=b,DE=10-b,
∵CD2+CE2=DE2,
∴42+b2=(8-b)2,
解得b=3,
∴點E的坐標(biāo)是(10,3),
∴k=10×3=30,
∴線段AF的長為:
30$÷8=\frac{15}{4}$.
故選:A.
點評 (1)此題主要考查了翻折變換(折疊問題),要熟練掌握,解答此題的關(guān)鍵是要明確:折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等.
(2)此題還考查了反比例函數(shù)圖象上點的坐標(biāo)特征,要熟練掌握,解答此題的關(guān)鍵是要明確:①圖象上的點(x,y)的橫縱坐標(biāo)的積是定值k,即xy=k;②雙曲線是關(guān)于原點對稱的,兩個分支上的點也是關(guān)于原點對稱;③在xk圖象中任取一點,過這一個點向x軸和y軸分別作垂線,與坐標(biāo)軸圍成的矩形的面積是定值|k|.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com