分析 (1)連接OB,根據(jù)同弧所對(duì)的圓周角是圓心角的一半和等腰三角形的性質(zhì)解答即可;
(2)根據(jù)(1)的方法解答即可;
(3)過(guò)O作OE⊥AC于E,連接OC,證明AE=$\frac{\sqrt{3}}{2}$OA,得到△ABC為正三角形,得到答案.
解答 解:(1)連接OB,則OA=OB,
∴∠OAB=∠OBA,![]()
∵∠C=36°,
∴∠AOB=72°,
∵∠OAB=$\frac{1}{2}$(180°-∠AOB)=54°,
即β=54°.
(2)α與β之間的關(guān)系是α+β=90°;
證明:∵∠OBA=∠OAB=α,
∴∠AOB=180°-2α,
∵∠AOB=2∠β,
∴180°-2α=2∠β,
∴α+β=90°.
(3)∵點(diǎn)C平分優(yōu)弧AB
∴AC=BC
又∵BC2=3OA2,
∴AC=BC=$\sqrt{3}$OA,
過(guò)O作OE⊥AC于E,連接OC,![]()
由垂徑定理可知AE=$\frac{\sqrt{3}}{2}$OA,
∴∠AOE=60°,∠OAE=30°,
∴∠ABC=60°,
∴△ABC為正三角形,
則α=∠CAB-∠CAO=30°.
點(diǎn)評(píng) 本題考查的是三角形的外接圓、垂徑定理和銳角三角函數(shù)的知識(shí),綜合性較強(qiáng),需要學(xué)生靈活運(yùn)用所學(xué)的知識(shí),正確作出輔助線構(gòu)造直角三角形進(jìn)行解答.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com