分析 根據(jù)已知條件∠BAO=∠CAO=∠CBO=∠ACO=$\frac{1}{2}∠$BAC,得到OA=OC,設(shè)∠BAC=α,∠ABC=β,∠ACB=γ,由正弦定理得$\frac{OA}{sin(β-\frac{1}{2}α)}$=$\frac{BO}{sin\frac{1}{2}α}$,$\frac{CO}{sin\frac{1}{2}α}$=$\frac{BO}{sin(γ-\frac{1}{2}α)}$,兩式相比得到sin2$\frac{1}{2}α$=sin($β-\frac{1}{2}α$)•sin(γ-$\frac{1}{2}α$),化簡后即可得到結(jié)論.
解答 解:∵∠BAO=∠CAO=∠CBO=∠ACO=$\frac{1}{2}∠$BAC,
∴OA=OC,
設(shè)∠BAC=α,∠ABC=β,∠ACB=γ,
在△ABO和△BCO中,由正弦定理得$\frac{OA}{sin(β-\frac{1}{2}α)}$=$\frac{BO}{sin\frac{1}{2}α}$,$\frac{CO}{sin\frac{1}{2}α}$=$\frac{BO}{sin(γ-\frac{1}{2}α)}$,
∵AO=CO,
∴兩式相比得:sin2$\frac{1}{2}α$=sin($β-\frac{1}{2}α$)•sin(γ-$\frac{1}{2}α$),
∴1-cosα=cos(β-γ)-cos(β+γ-α),1+cos(β+γ-α)=cos(β-γ)+cosα.
∵β+γ-α=180°-2α,
∴2sin2α=2sinβsinγ,
∴BC2=AC•AB.
點(diǎn)評 本題考查了三角形的內(nèi)角和,正弦定理,三角函數(shù),正確掌握正弦定理是解題的關(guān)鍵.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{x-y}{x+y}$ | B. | $\frac{x+y}{x-y}$ | C. | $\frac{(x-y)^{2}}{x+y}$ | D. | 1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com