分析 由P坐標(biāo)為(2,2),可得∠AOP=45°,然后分別從OA=PA,OP=PA,OA=OP去分析求解即可求得答案.
解答
解:∵P坐標(biāo)為(2,2),
∴∠AOP=45°,
①如圖1,若OA=PA,則∠AOP=∠OPA=45°,
∴∠OAP=90°,
即PA⊥x軸,
∵∠APB=90°,
∴PB⊥y軸,
∴點(diǎn)B的坐標(biāo)為:(0,2);
②如圖2,若OP=PA,則∠AOP=∠OAP=45°,
∴∠OPA=90°,
∵∠BPA=90°,
∴點(diǎn)B與點(diǎn)O重合,
∴點(diǎn)B的坐標(biāo)為(0,0);
③如圖3,若OA=OP,則∠OPA=∠OAP=$\frac{180°-∠AOP}{2}$=67.5°,
過點(diǎn)P作PC⊥y軸于點(diǎn)C,過點(diǎn)B作BD⊥OP于點(diǎn)D,
則PC∥OA,
∴∠OPC=∠AOP=45°,
∵∠APB=90°,
∴∠OPB=∠APB-∠OPA=22.5°,
∴∠OPB=∠CPB=22.5°,
∴BC=BD,
設(shè)OB=a,
則BD=BC=2-a,
∵∠BOP=45°,
在Rt△OBD中,BD=OB•sin45°,
即2-a=$\frac{\sqrt{2}}{2}$a,
解得:a=4-2$\sqrt{2}$.
綜上可得:點(diǎn)B的坐標(biāo)為:(0,2),(0,0),(0,4-2$\sqrt{2}$).
故答案為:(0,2),(0,0),(0,4-2$\sqrt{2}$).
點(diǎn)評 此題考查了等腰三角形的性質(zhì)、三角函數(shù)的定義以及旋轉(zhuǎn)的性質(zhì).此題難度較大,注意掌握方程思想、分類討論思想以及數(shù)形結(jié)合思想的應(yīng)用.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com