分析 首先利用勾股定理求出AC,當(dāng)P在BC上時,①BP=EB=2,②BP=PE,作PM⊥AB于M,根據(jù)cosB求出BP,③BE=PE=2cm,作EN⊥BC于N,根據(jù)cosB求出BN;當(dāng)P在CD上不能得出等腰三角形;當(dāng)P在AD上時,過P作PQ⊥BA于Q,證△QAP∽△ABC,推出PQ:AQ:AP=4:3:5,設(shè)PQ=4xcm,AQ=3xcm,在△EPN中,由勾股定理得出方程(3x+1)2+(4x)2=22,求出方程的解即可.
解答 解:∵∠BAC=90°,BC=5cm,AB=3cm,′
由勾股定理得:AC=4cm,
即AB、CD間的最短距離是4cm,
∵AB=3cm,AE=$\frac{1}{3}$AB,
∴AE=1cm,BE=2cm,
設(shè)經(jīng)過ts時,△BEP是等腰三角形,
當(dāng)P在BC上時,
①BP=EB=2cm,
t=2s時,△BEP是等腰三角形;
②BP=PE,
作PM⊥AB于M,
∴BM=ME=$\frac{1}{2}$BE=1cm
∵cos∠ABC=$\frac{AB}{BC}$=$\frac{BM}{BP}$=$\frac{3}{5}$,
∴BP=$\frac{5}{3}$cm,
t=$\frac{5}{3}$時,△BEP是等腰三角形;
③BE=PE=2cm,![]()
作EN⊥BC于N,則BP=2BN,
∴cosB=$\frac{BN}{BE}$=$\frac{3}{5}$,
∴$\frac{BN}{2}$=$\frac{3}{5}$,
∴BN=$\frac{6}{5}$cm,
∴BP=$\frac{12}{5}$,
∴t=$\frac{12}{5}$時,△BEP是等腰三角形;
當(dāng)P在CD上不能得出等腰三角形,
∵AB、CD間的最短距離是4cm,CA⊥AB,CA=4cm,
當(dāng)P在AD上時,只能BE=EP=2cm,
過P作PQ⊥BA于Q,
∵四邊形ABCD是平行四邊形,
∴AD∥BC,
∴∠QAD=∠ABC,
∵∠BAC=∠Q=90°,
∴△QAP∽△ABC,
∴PQ:AQ:AP=4:3:5,
設(shè)PQ=4xcm,AQ=3xcm,
在△EPQ中,由勾股定理得:(3x+1)2+(4x)2=22,
∴x=$\frac{2\sqrt{21}-3}{25}$,
AP=5x=$\frac{2\sqrt{21}-3}{5}$cm,
∴t=5+5+3-$\frac{2\sqrt{21}-3}{5}$=$\frac{68-2\sqrt{21}}{5}$,
答:從運(yùn)動開始經(jīng)過2s或$\frac{5}{3}$s或$\frac{12}{5}$s或$\frac{68-2\sqrt{21}}{5}$,s時,△BEP為等腰三角形.
故答案為:$\frac{5}{3}$,2,$\frac{12}{5}$,$\frac{{68-2\sqrt{21}}}{5}$.
點評 本題主要考查對平行四邊形的性質(zhì)和判定,相似三角形的性質(zhì)和判定.全等三角形的性質(zhì)和判定,勾股定理,等腰三角形的性質(zhì),勾股定理等知識點的理解和掌握,綜合運(yùn)用這些性質(zhì)進(jìn)行推理是解此題的關(guān)鍵.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com