分析 (1)由正方形的性質(zhì)得出∠ABE=∠BCF=90°,AB=BC,由SAS證明△ABE≌△BCF,得出對應(yīng)邊相等即可;
(2)由全等三角形的性質(zhì)得出∠BAE=∠CBF,由角的互余關(guān)系證出∠BGE=90°,即可得出結(jié)論.
解答 解:(1)AE=BF;理由如下:
∵四邊形ABCD是正方形,
∴∠ABE=∠BCF=90°,AB=BC,
在△ABE和△BCF中,$\left\{\begin{array}{l}{AB=BC}&{\;}\\{∠ABE=∠BCF}&{\;}\\{BE=CF}&{\;}\end{array}\right.$,
∴△ABE≌△BCF(SAS),
∴AE=BF;
(2)AE⊥BF;理由如下:
由(1)得:△ABE≌△BCF,
∴∠BAE=∠CBF,
∵∠BAE+∠AEB=90°,
∴∠CBF+∠AEB=90°,
∴∠BGE=90°,
∴AE⊥BF.
點(diǎn)評 本題考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì);熟練掌握正方形的性質(zhì),并能進(jìn)行推理論證是解決問題的關(guān)鍵.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 6,$3\sqrt{2}$ | B. | $3\sqrt{2}$,3 | C. | 6,3 | D. | $6\sqrt{2}$,$3\sqrt{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1個(gè) | B. | 2個(gè) | C. | 4個(gè) | D. | 3個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com