分析 根據(jù)已知條件得到∠B=∠3=∠C=∠F,由三角形的內角和和平角的定義得到∠2=∠4,推出△BEN∽△CME,得到$\frac{CM}{BE}=\frac{ME}{EN}$,等量代換得到$\frac{CM}{CE}=\frac{EM}{EN}$,于是推出△CME∽△MEN,根據(jù)相似三角形的性質即可得到結論.
解答
解:∵△ABC≌△DEF,AB=AC=DE=DF,
∴∠B=∠3=∠C=∠F,
∴∠1+∠2=180°-∠3,∠1+∠4=180°-∠B,
∴∠2=∠4,
∴△BEN∽△CME,
∴$\frac{CM}{BE}=\frac{ME}{EN}$,
∵BE=CE,
∴$\frac{CM}{CE}=\frac{EM}{EN}$,
∴△CME∽△MEN,
∴∠NME=∠CME.
點評 本題考查了相似三角形的判定和性質,全等三角形的性質,等腰三角形的性質,熟練掌握相似三角形的判定和性質是解題的關鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | (x-3)2=13 | B. | (x-3)2=5 | C. | (x-6)2=13 | D. | (x-6)2=5 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com