分析 (1)由圖可知,乙隊在0≤x≤2的時段內(nèi)2小時施工30米,根據(jù)速度=路程÷時間,即可解答;
(2)設(shè)函數(shù)關(guān)系式為y=kx+b,然后利用待定系數(shù)法求一次函數(shù)解析式解答;
(3)先求出甲隊的速度,然后設(shè)甲隊從開始到完工所鋪設(shè)彩色道磚的長度為z米,再根據(jù)6小時后兩隊的施工時間相等列出方程求解即可.
解答 解:(1)乙隊在0≤x≤2的時段內(nèi)的施工速度為:30÷2=15米/時;
(2)設(shè)乙隊在2≤x≤6的時段內(nèi)y與x之間的函數(shù)關(guān)系式為y=kx+b,
由圖可知,函數(shù)圖象過點(2,30),(6,50),
∴$\left\{\begin{array}{l}{2k+b=30}\\{6k+b=50}\end{array}\right.$,
解得$\left\{\begin{array}{l}{k=5}\\{b=20}\end{array}\right.$,
∴y=5x+20;
(3)由圖可知,甲隊速度是:60÷6=10(米/時),
設(shè)甲隊從開始到完工所鋪設(shè)彩色道磚的長度為z米,
依題意,得$\frac{z-60}{10}=\frac{z-50}{12}$,
解得z=110,
答:甲隊從開始到完工所鋪設(shè)彩色道磚的長度為110米.
點評 本題考查了一次函數(shù)的應用,主要利用了待定系數(shù)法求一次函數(shù)解析式,難點在于(3)根據(jù)6小時后的施工時間相等列出方程.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com