分析 (1)由等腰三角形的性質(zhì)和勾股定理即可得出結(jié)果;
(2)利用勾股定理,借助于平方差公式即可證明;
(3)同(2).
解答 解:(1)∵AB=AC=5,BC=6,AD⊥BC,
∴BD=CD=3,
∴AD=$\sqrt{A{B}^{2}-B{D}^{2}}$=$\sqrt{{5}^{2}-{3}^{2}}$=4;
(2)∵AB=AC,
∴BD=CD
在Rt△ABD中,AB2=AD2+BD2①
在Rt△APD中,AP2=AD2+PD2②
①-②得:AB2-AP2=BD2-PD2=(BD+PD)(BD-PD)=PC•BP,
∴AP2+PB•PC=AB2=25;
(3)若點P是BC的延長線上的任意一點,同(2)得:AP2-PB•PC=AB2=25.
點評 本題主要考查勾股定理、等腰三角形性質(zhì);熟練掌握等腰三角形的性質(zhì)和勾股定理是解決問題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com