分析 (1)連接OC,由AB是⊙O的直徑,得到∠ACB=90°,求得∠BCO+∠ACO=90°,根據(jù)等腰三角形的性質(zhì)得到∠B=∠BCO,等量代換得到∠BCO=∠ACP,求得∠OCP=90°,于是得到結(jié)論;
(2)解直角三角形即可得到結(jié)論.
解答
解:(1)連接OC,
∵AB是⊙O的直徑,
∴∠ACB=90°,
∴∠BCO+∠ACO=90°,
∵OC=OB,
∴∠B=∠BCO,
∵∠PCA=∠ABC,
∴∠BCO=∠ACP,
∴∠ACP+∠OCA=90°,
∴∠OCP=90°,
∴PC是⊙O的切線;
(2)∵∠P=60°,PC=2,∠PCO=90°,
∴OC=2$\sqrt{3}$,OP=2PC=4,
∴PE=OP-OE=OP-OC=4-2$\sqrt{3}$.
點(diǎn)評 本題考查了切線的判定,等腰三角形的性質(zhì),解直角三角形,正確作出輔助線是解題的關(guān)鍵.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com