分析 (1)因?yàn)锳F是直角三角形ABE的中線,所以BE=2AF,然后通過(guò)△ABE≌△ACD即可求得;
(2)延長(zhǎng)EA交BC于G,在AG上截取AH=AD,證出△ABH≌△ACD從而證得BH=CD,然后根據(jù)三角形的中位線等于底邊的一半,求得BH=2AF,即可求得;
(3)根據(jù)勾股定理求出CD,根據(jù)全等三角形的性質(zhì)求出BH、EH,根據(jù)勾股定理計(jì)算即可.
解答
(1)證明:如圖①,
∵∠BAC+∠EAD=180°,∠BAE=90°,
∴∠DAC=90°,
在△ABE與△ACD中
$\left\{\begin{array}{l}{AE=AD}\\{∠BAE=∠CAD=90°}\\{AB=AC}\end{array}\right.$,
∴△ABE≌△ACD(SAS),
∴CD=BE,
∵在Rt△ABE中,F(xiàn)為BE的中點(diǎn),
∴BE=2AF,
∴CD=2AF;
(2)成立,![]()
證明:如圖②,延長(zhǎng)EA交BC于G,在AG上截取AH=AD,連接BH,
∵∠BAC+∠EAD=180°,
∴∠EAB+∠DAC=180°,
∵∠EAB+∠BAH=180°,
∴∠DAC=∠BAH,
在△ABH與△ACD中,
$\left\{\begin{array}{l}{AH=AD}\\{∠BAH=∠CAD}\\{AB=AC}\end{array}\right.$,
∴△ABH≌△ACD(SAS)
∴BH=DC,
∵AD=AE,AH=AD,
∴AE=AH,
∵EF=FB,
∴BH=2AF,
∴CD=2AF;
(3)∵∠ADC=90°,AD=5,AC=13,
∴CD2=AC2-AD2=144,
則CD=12,
由(2)得,BH=CD=12,EH=EA+AH=10,
∵△ABH≌△ACD,
∴∠BHE=∠ADC=90°,
∴BE2=BH2+EH2=244.
點(diǎn)評(píng) 本題考查了三角形全等的判定和性質(zhì),等腰三角形的性質(zhì),三角形中位線的性質(zhì)等.作出正確的輔助線是解題關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com