分析 (1)根據(jù)待定系數(shù)法求二次函數(shù)解析式,再用配方法或公式法求出對稱軸即可;
(2)利用正方形的性質(zhì)得出橫縱坐標(biāo)之間的關(guān)系即可得出答案;
(3)設(shè)P(0,y),再由PC=PE時(shí)最小求出y的值即可.
解答 解:(1)∵二次函數(shù)y=-x2+bx+c的圖象經(jīng)過A(-2,-1),B(0,7)兩點(diǎn).
∴$\left\{\begin{array}{l}-1=-4-2b+c\\ c=7\end{array}\right.$,
解得:$\left\{\begin{array}{l}b=2\\ c=7\end{array}\right.$,
∴y=-x2+2x+7,
=-(x2-2x)+7,
=-[(x2-2x+1)-1]+7,
=-(x-1)2+8,
∴對稱軸為直線x=1;
(2)∵當(dāng)矩形CDEF為正方形時(shí),假設(shè)C點(diǎn)坐標(biāo)為(x,-x2+2x+7),
∴D點(diǎn)坐標(biāo)為(-x2+2x+7+x,-x2+2x+7),即(-x2+3x+7,-x2+2x+7),
∵對稱軸為:直線x=1,D到對稱軸距離等于C到對稱軸距離相等,
∴-x2+3x+7-1=-x+1,
解得:x1=-1,x2=5(不合題意舍去),
x=-1時(shí),-x2+2x+7=4,
∴C點(diǎn)坐標(biāo)為:(-1,4).
(3)能.
理由:∵C(-1,4),
∴E(3,0).
設(shè)P(0,y),
∵PC=PE時(shí)最小,
∴12+(y-4)2=32+y2,解得y=1,
∴P(0,1).
點(diǎn)評(píng) 此題考查的是二次函數(shù)綜合題,涉及到待定系數(shù)法求二次函數(shù)解析式以及利用圖象觀察函數(shù)值和正方形性質(zhì)等知識(shí),根據(jù)題意得出C、D兩點(diǎn)坐標(biāo)之間的關(guān)系是解決問題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com