分析 (1)根據(jù)點P、Q的運動速度求出AP,再求出BP和BQ,用勾股定理求得PQ即可;
(2)由題意得出BQ=BP,即2t=8-t,解方程即可;
(3)當(dāng)點Q在邊CA上運動時,能使△BCQ成為等腰三角形的運動時間有三種情況:
①當(dāng)CQ=BQ時(圖1),則∠C=∠CBQ,可證明∠A=∠ABQ,則BQ=AQ,則CQ=AQ,從而求得t;
②當(dāng)CQ=BC時(圖2),則BC+CQ=12,易求得t;
③當(dāng)BC=BQ時(圖3),過B點作BE⊥AC于點E,則求出BE,CE,即可得出t.
解答 (1)解:(1)BQ=2×2=4cm,
BP=AB-AP=8-2×1=6cm,
∵∠B=90°,
PQ=$\sqrt{B{Q}^{2}+B{P}^{2}}$=$\sqrt{{4}^{2}+{6}^{2}}$=2$\sqrt{13}$(cm);
(2)解:根據(jù)題意得:BQ=BP,
即2t=8-t,
解得:t=$\frac{8}{3}$;
即出發(fā)時間為$\frac{8}{3}$秒時,△PQB是等腰三角形;
(3)解:分三種情況:
①當(dāng)CQ=BQ時,如圖1所示:![]()
則∠C=∠CBQ,
∵∠ABC=90°,
∴∠CBQ+∠ABQ=90°,
∠A+∠C=90°,
∴∠A=∠ABQ
∴BQ=AQ,
∴CQ=AQ=5![]()
∴BC+CQ=11,
∴t=11÷2=5.5秒.
②當(dāng)CQ=BC時,如圖2所示:
則BC+CQ=12
∴t=12÷2=6秒.
③當(dāng)BC=BQ時,如圖3所示:![]()
過B點作BE⊥AC于點E,
則BE=$\frac{AB•BC}{AC}$=$\frac{6×8}{10}$=4.8(cm)
∴CE=$\sqrt{B{C}^{2}-B{E}^{2}}$=3.6cm,
∴CQ=2CE=7.2cm,
∴BC+CQ=13.2cm,
∴t=13.2÷2=6.6秒.
由上可知,當(dāng)t為5.5秒或6秒或6.6秒時,
△BCQ為等腰三角形.
點評 本題考查了勾股定理、三角形的面積以及等腰三角形的判定和性質(zhì);本題有一定難度,注意分類討論思想的應(yīng)用.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2,1 | B. | 1,1 | C. | 1,3 | D. | 1,2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com