【題目】已知函數(shù)
,直線
:
.
(Ⅰ)設(shè)
是
圖象上一點,
為原點,直線
的斜率
,若
在
上存在極值,求
的取值范圍;
(Ⅱ)是否存在實數(shù)
,使得直線
是曲線
的切線?若存在,求出
的值;若不存在,說明理由;
(Ⅲ)試確定曲線
與直線
的交點個數(shù),并說明理由.
【答案】
,(Ⅲ)見解析
【解析】
(Ⅰ)先根據(jù)斜率公式列
再求導(dǎo)數(shù)及其零點,最后根據(jù)條件列不等式,解得結(jié)果,(Ⅱ)設(shè)切點,根據(jù)導(dǎo)數(shù)幾何意義得斜率,再根據(jù)點斜式得切線方程,最后根據(jù)切線過(0,-1)點列方程,解得切點坐標(biāo),即得
的值;(Ⅲ)先變量分離,轉(zhuǎn)化為研究函數(shù)
圖象,利用導(dǎo)數(shù)研究其單調(diào)性,再結(jié)合函數(shù)圖象確定交點個數(shù).
(Ⅰ)∵
,∴
,解得
.
由題意得:
,解得
.
(Ⅱ)假設(shè)存在實數(shù)
,使得直線是曲線
的切線,令切點
,
∴切線的斜率
.
∴切線的方程為
,
又∵切線過(0,-1)點,
∴
.
解得
,∴
,
∴
.
(Ⅲ)由題意,令
, 得
.
令
, ∴
,由
,解得
.
∴
在(0,1)上單調(diào)遞增,在
上單調(diào)遞減,
∴
,又時,
;
時,
,
時,只有一個交點;
時,有兩個交點;
時,沒有交點.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcosθ+ρsinθ=1,曲線C的極坐標(biāo)方程為ρsin2θ=8cosθ.
(1)求直線l與曲線C的直角坐標(biāo)方程;
(2)設(shè)點M(0,1),直線l與曲線C交于不同的兩點P,Q,求|MP|+|MQ|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
=
.
(1)求函數(shù)
的單調(diào)遞增區(qū)間;
(2)已知在△ABC中,A,B,C的對邊分別為a,b,c,若
,
,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線C:
,O為坐標(biāo)原點,F為C的右焦點,過F的直線與C的兩條漸近線的交點分別為M、N.若
OMN為直角三角形,則|MN|=
A.
B. 3 C.
D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,正確的序號是( 。
①“b=2”是“1,b,4成等比數(shù)列”的充要條件;
②“雙曲線
與橢圓
有共同焦點”是真命題;
③若命題p∨¬q為假命題,則q為真命題;
④命題p:x∈R,x2﹣x+1>0的否定是:x∈R,使得x2﹣x+1≤0.
A.①②B.②③④C.②③D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四棱錐P﹣ABCD中,平面PAD⊥平面ABCD,PA=PD
,四邊形ABCD為等腰梯形,BC∥AD,BC=CD
AD=1,E為PA的中點.
![]()
(1)求證:EB∥平面PCD;
(2)求平面PAC與平面PCD所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】微信運動,是由騰訊開發(fā)的一個類似計步數(shù)據(jù)庫的公眾賬號.用戶可以通過關(guān)注微信運動公眾號查看自己每天或每月行走的步數(shù),同時也可以和其他用戶進行運動量的
或點贊.加入微信運動后,為了讓自己的步數(shù)能領(lǐng)先于朋友,人們運動的積極性明顯增強,下面是某人2018年1月至2018年11月期間每月跑步的平均里程(單位:十公里)的數(shù)據(jù),繪制了下面的折線圖.
根據(jù)折線圖,下列結(jié)論正確的是( )
![]()
A. 月跑步平均里程的中位數(shù)為
月份對應(yīng)的里程數(shù)
B. 月跑步平均里程逐月增加
C. 月跑步平均里程高峰期大致在
、
月
D.
月至
月的月跑步平均里程相對于
月至
月,波動性更小,變化比較平穩(wěn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
,過定點
作不垂直于x軸的直線
,交拋物線于A,B兩點.
(1)設(shè)O為坐標(biāo)原點,求證:
為定值;
(2)設(shè)線段
的垂直分線與x軸交于點
,求n的取值范圍;
(3)設(shè)點A關(guān)于x軸的對稱點為D,求證:直線
過定點,并求出定點的坐標(biāo).
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com