【題目】已知點
關(guān)于坐標(biāo)原點
對稱,
,以
為圓心的圓過
兩點,且與直線
相切.若存在定點
,使得當(dāng)
運動時,
為定值,則點
的坐標(biāo)為( )
A.
B.
C.
D.![]()
【答案】D
【解析】
根據(jù)圓的幾何性質(zhì),結(jié)合圓的切線性質(zhì)、勾股定理,通過計算可以判斷出點
的軌跡是拋物線,再根據(jù)拋物線的定義進行求解即可.
設(shè)
,因為點
關(guān)于坐標(biāo)原點
對稱,所以
是線段
的中點,
又因為以
為圓心的圓過
兩點,所以有
,
因此有
,因為點
關(guān)于坐標(biāo)原點
對稱,
,
所以
.
又因為以
為圓心的圓與直線
相切,所以有
,
把
、
代入
中,得:
,化簡得:
,因此點
的軌跡是拋物線,
該拋物線的焦點坐標(biāo)為
,準(zhǔn)線方程為:
,
,
由拋物線的定義可知:
,
所以有
,
由題意可知存在定點
,使得當(dāng)
運動時,
為定值,
因此一定有
,此時定點
是該拋物線的焦點
.
故選:D
科目:高中數(shù)學(xué) 來源: 題型:
【題目】阿波羅尼斯(約公元前
年)證明過這樣一個命題:平面內(nèi)到兩定點距離之比為常數(shù)
的點的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.若平面內(nèi)兩定點
、
間的距離為
,動點
滿足
,則
的最小值為( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
年初新冠病毒疫情爆發(fā),全國范圍開展了“停課不停學(xué)”的線上教學(xué)活動.哈六中數(shù)學(xué)組積極研討網(wǎng)上教學(xué)策略:先采取甲、乙兩套方案教學(xué),并對分別采取兩套方案教學(xué)的班級的
次線上測試成績進行統(tǒng)計如圖所示:
![]()
(1)請?zhí)顚懴卤恚ㄒ髮懗鲇嬎氵^程)
平均數(shù) | 方差 | |
甲 | ||
乙 |
(2)從下列三個不同的角度對這次方案選擇的結(jié)果進行
①從平均數(shù)和方差相結(jié)合看(分析哪種方案的成績更好);
②從折線圖上兩種方案的走勢看(分析哪種方案更有潛力).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校藝術(shù)學(xué)院2019級表演專業(yè)有27人,播音主持專業(yè)9人,影視編導(dǎo)專業(yè)18人.某電視臺綜藝節(jié)目招募觀眾志愿者,現(xiàn)采用分層抽樣的方法從上述三個專業(yè)的人員中選取6人作為志愿者.
(1)分別寫出各專業(yè)選出的志愿者人數(shù);
(2)將6名志愿者平均分成三組,且每組的兩名同學(xué)選自不同的專業(yè),通過適當(dāng)?shù)姆绞搅谐鏊锌赡艿慕Y(jié)果,并求表演專業(yè)的志愿者
與播音主持專業(yè)的志愿者分在一組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國是世界第一產(chǎn)糧大國,我國糧食產(chǎn)量很高,整體很安全按照14億人口計算,中國人均糧食產(chǎn)量約為950斤﹣比全球人均糧食產(chǎn)量高了約250斤.如圖是中國國家統(tǒng)計局網(wǎng)站中2010﹣2019年,我國糧食產(chǎn)量(千萬噸)與年末總?cè)丝冢ㄇf人)的條形圖,根據(jù)如圖可知在2010﹣2019年中( )
![]()
A.我國糧食年產(chǎn)量與年末總?cè)丝诰鹉赀f增
B.2011年我國糧食年產(chǎn)量的年增長率最大
C.2015年﹣2019年我國糧食年產(chǎn)量相對穩(wěn)定
D.2015年我國人均糧食年產(chǎn)量達到了最高峰
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】請從下面三個條件中任選一個,補充在下面的橫線上,并作答.
①AB⊥BC,②FC與平面ABCD所成的角為
,③∠ABC
.
如圖,在四棱錐P﹣ABCD中,底面ABCD是菱形,PA⊥平面ABCD,且PA=AB=2,,PD的中點為F.
![]()
(1)在線段AB上是否存在一點G,使得AF
平面PCG?若存在,指出G在AB上的位置并給以證明;若不存在,請說明理由;
(2)若_______,求二面角F﹣AC﹣D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線
的極坐標(biāo)方程為
,直線
的參數(shù)方程為
(
為參數(shù)).
(Ⅰ)求曲線
的參數(shù)方程與直線
的普通方程;
(Ⅱ)設(shè)點
為曲線
上的動點,點
和點
為直線
上的點,且
.求
面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)記
,當(dāng)
時,恒有
,求實數(shù)
的取值范圍;
(Ⅱ)若
,求證:對任意
,
與
在
上有唯一公共點.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com