12.
解:(1)如圖:
,
;(2) (b,a) ;
(3)由(2)得,D(1,-3) 關(guān)于直線l的對(duì)稱點(diǎn)
的坐標(biāo)為(-3,1),連接
E交直線l于點(diǎn)Q,此時(shí)點(diǎn)Q到D、E兩點(diǎn)的距離之和最小
設(shè)過
(-3,1) 、E(-1,-4)的設(shè)直線的解析式為
,則
,∴
,∴
.由
得
,∴所求Q點(diǎn)的坐標(biāo)為(
,
)
11. 解:由圖象可知,點(diǎn)
在直線
上,
.解得
.
直線的解析式為
.令
,可得
.
直線與
軸的交點(diǎn)坐標(biāo)為
.令
,可得
.
直線與
軸的交點(diǎn)坐標(biāo)為
.
10. 解:(1)由直角三角形紙板的兩直角邊的長為1和2,
知
兩點(diǎn)的坐標(biāo)分別為
.
設(shè)直線
所對(duì)應(yīng)的函數(shù)關(guān)系式為
.···························································· 2分
有
解得![]()
所以,直線
所對(duì)應(yīng)的函數(shù)關(guān)系式為
.····················································· 4分
(2)①點(diǎn)
到
軸距離
與線段
的長總相等.
因?yàn)辄c(diǎn)
的坐標(biāo)為
,
所以,直線
所對(duì)應(yīng)的函數(shù)關(guān)系式為
.
又因?yàn)辄c(diǎn)
在直線
上,
所以可設(shè)點(diǎn)
的坐標(biāo)為
.
過點(diǎn)
作
軸的垂線,設(shè)垂足為點(diǎn)
,則有
.
因?yàn)辄c(diǎn)
在直線
上,所以有
.······················· 6分
因?yàn)榧埌鍨槠叫幸苿?dòng),故有
,即
.
又
,所以
.
法一:故
,
從而有
.
得
,
.
所以
.
又有
.························································ 8分
所以
,得
,而
,
從而總有
.····································································································· 10分
法二:故
,可得
.
故
.
所以
.
故
點(diǎn)坐標(biāo)為
.
設(shè)直線
所對(duì)應(yīng)的函數(shù)關(guān)系式為
,
則有
解得![]()
所以,直線
所對(duì)的函數(shù)關(guān)系式為
.·············································· 8分
將點(diǎn)
的坐標(biāo)代入,可得
.解得
.
而
,從而總有
.························································· 10分
②由①知,點(diǎn)
的坐標(biāo)為
,點(diǎn)
的坐標(biāo)為
.
![]()
![]()
.····································································· 12分
當(dāng)
時(shí),
有最大值,最大值為
.
取最大值時(shí)點(diǎn)
的坐標(biāo)為
. 14分
9.
解:(1)
······························· (3分)
(2)由題意,可得:
.
.·········································································································· (5分)
當(dāng)
時(shí),
.
造這片林的總費(fèi)用需45 000元.········································································· (8分)
8.
解:(1)
;
(2)
,![]()
(天)
答:乙隊(duì)單獨(dú)完成這項(xiàng)工程要60天.
(3)
(天)
答:圖中
的值是28.
7. 解:(1)設(shè)
與
之間的關(guān)系為一次函數(shù),其函數(shù)表達(dá)式為
··················· 1分
將
,
代入上式得,
解得![]()
········································································································· 4分
驗(yàn)證:當(dāng)
時(shí),
,符合一次函數(shù);
當(dāng)
時(shí),
,也符合一次函數(shù).
可用一次函數(shù)
表示其變化規(guī)律,
而不用反比例函數(shù)、二次函數(shù)表示其變化規(guī)律.···························································· 5分
與
之間的關(guān)系是一次函數(shù),其函數(shù)表達(dá)式為
································ 6分
(2)當(dāng)
時(shí),由
可得![]()
即貨車行駛到
處時(shí)油箱內(nèi)余油16升.········································································ 8分
(3)方法不唯一,如:
方法一:由(1)得,貨車行駛中每小時(shí)耗油20升,····················································· 9分
設(shè)在
處至少加油
升,貨車才能到達(dá)
地.
依題意得,
,···························································· 11分
解得,
(升)··································································································· 12分
方法二:由(1)得,貨車行駛中每小時(shí)耗油20升,····················································· 9分
汽車行駛18千米的耗油量:
(升)
之間路程為:
(千米)
汽車行駛282千米的耗油量:
(升)······························································································· 11分
(升)················································································ 12分
方法三:由(1)得,貨車行駛中每小時(shí)耗油20升,····················································· 9分
設(shè)在
處加油
升,貨車才能到達(dá)
地.
依題意得,
,
解得,
············································································································· 11分
在
處至少加油
升,貨車才能到達(dá)
地.·························································· 12分
6. 解:(1)
特征數(shù)為
的一次函數(shù)為
,
,
.
(2)
拋物線與
軸的交點(diǎn)為
,
與
軸的交點(diǎn)為
.
若
,則
,
;
若
,則
,
.
當(dāng)
時(shí),滿足題設(shè)條件.
此時(shí)拋物線為
.
它與
軸的交點(diǎn)為
,
與
軸的交點(diǎn)為
,
一次函數(shù)為
或
,
特征數(shù)為
或
.
5. 解⑴y=(63-55)x+(40-35)(500-x)……………3分
=2x+2500。即y=2x+2500(0≤x≤500),………………4分
⑵由題意,得55x+35(500-x)≤20000,………………6分
解這個(gè)不等式,得x≤125,………………………………7分
∴當(dāng)x=125時(shí),y最大值=3×12+2500=2875(元),…………9分
∴該商場(chǎng)購進(jìn)A、B兩種品牌的飲料分別為125箱、375箱時(shí),能獲得最大利潤2875元.………………………………………………………………10分
4. 解:設(shè)這個(gè)一次函數(shù)的解析式為y=kx+b.
則
解得
,函數(shù)的解析式為y=-2x+3.
由題意,得
得
,所以使函數(shù)為正值的x的范圍為![]()
3. 解:(1)
,所以不能在60天內(nèi)售完這些椪柑,
(千克)
即60天后還有庫存5000千克,總毛利潤為
W=
;
(2)![]()
要在2月份售完這些椪柑,售價(jià)x必須滿足不等式
![]()
解得![]()
所以要在2月份售完這些椪柑,銷售價(jià)最高可定為1.4元/千克。
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com