分析 (1)連接FO,由F為BC的中點(diǎn),AO=CO,得到OF∥AB,由于AC是⊙O的直徑,得出CE⊥AE,根據(jù)OF∥AB,得出OF⊥CE,于是得到OF所在直線垂直平分CE,推出FC=FE,OE=OC,再由∠ACB=90°,即可得到結(jié)論.
(2)設(shè)P點(diǎn)到直線AD的距離為d,記△PAD的面積S△PAD,根據(jù)三角形的面積得到d=$\frac{PD•AC}{AD}$ ①由勾股定理得BC=6$\sqrt{3}$,根據(jù)平行線的性質(zhì)得到∠OPC=∠B=30°,推出△OEA為等邊三角形,得到∠EOA=60°,在Rt△ACD中,由勾股定理得:AD=$\sqrt{A{C}^{2}+C{D}^{2}}$=3$\sqrt{7}$,將以上數(shù)據(jù)代入①得即可得到結(jié)論.
解答
(1)證明:連接CE,如圖所示:
∵AC為⊙O的直徑,
∴∠AEC=90°.
∴∠BEC=90°.
∵點(diǎn)F為BC的中點(diǎn),
∴EF=BF=CF.
∴∠FEC=∠FCE.
∵OE=OC,
∴∠OEC=∠OCE.
∵∠FCE+∠OCE=∠ACB=90°,
∴∠FEC+∠OEC=∠OEF=90°.
∴EF是⊙O的切線;
(2)解:設(shè)P點(diǎn)到直線AD的距離為d,記△PAD的面積S△PAD,
則有:S△PAD=$\frac{1}{2}$AD•d=$\frac{1}{2}$PD•AC,
∴d=$\frac{PD•AC}{AD}$ ①
∵⊙O的半徑為3,∠B=30°,
∴∠BAC=60°,AC=6,AB=12,
由勾股定理得BC=6$\sqrt{3}$,
∴PC=3$\sqrt{3}$,
∵O,P分別是AC,BC的中點(diǎn),
∴OP∥AB,
∴∠OPC=∠B=30°,
∵OE=OA,∠OAE=60°,
∴△OEA為等邊三角形,
∴∠EOA=60°,
∴∠ODC=90°-∠COD=90°-∠EOA=30°,
∴∠ODC=∠OPC=30°,
∴OP=OD,
∵OC⊥PD,
∴CD=PC=3$\sqrt{3}$,
在Rt△ACD中,由勾股定理得:AD=$\sqrt{A{C}^{2}+C{D}^{2}}$=3$\sqrt{7}$,
將以上數(shù)據(jù)代入①得:d=$\frac{PD•AC}{AD}$=$\frac{6\sqrt{3}×6}{3\sqrt{7}}$=$\frac{12\sqrt{21}}{7}$.
點(diǎn)評(píng) 本題考查了切線的性質(zhì),相似三角形的判定和性質(zhì),勾股定理,等邊三角形的判定和性質(zhì),正確的作出輔助線是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1.2×109 | B. | 1.2×108 | C. | 12×109 | D. | 12×108 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 8 | B. | 2$\sqrt{2}$ | C. | $\sqrt{10}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com