分析 (1)求是否會(huì)受到臺(tái)風(fēng)的影響,其實(shí)就是求A到BC的距離是否大于臺(tái)風(fēng)影響范圍的半徑,如果大于,則不受影響,反之則受影響.如果過A作AD⊥BC于D,AD就是所求的線段.直角三角形ABD中,有∠ABD的度數(shù),有AB的長,AD就不難求出了.
(2)受臺(tái)風(fēng)影響時(shí),臺(tái)風(fēng)中心移動(dòng)的距離,應(yīng)該是A為圓心,臺(tái)風(fēng)影響范圍的半徑為半徑,所得圓截得的BC上的線段的長即EF得長,可通過在直角三角形AED和AFD中,根據(jù)勾股定理求得.有了路程,有了速度,時(shí)間就可以求出了.
(3)風(fēng)力最大時(shí),臺(tái)風(fēng)中心應(yīng)該位于D點(diǎn),然后根據(jù)題目給出的條件判斷出時(shí)幾級(jí)風(fēng).
解答
解:(1)該城市會(huì)受到這次臺(tái)風(fēng)的影響.
理由是:如圖,過A作AD⊥BC于D.在Rt△ABD中,
∵∠ABD=30°,AB=256km,
∴AD=$\frac{1}{2}$AB=128(km),
∵城市受到的風(fēng)力達(dá)到或超過四級(jí),則稱受臺(tái)風(fēng)影響,
∴受臺(tái)風(fēng)影響范圍的半徑為20×(12-4)=160.
∵128<160,
∴該城市會(huì)受到這次臺(tái)風(fēng)的影響.
(2)如圖以A為圓心,160為半徑作⊙A交BC于E、F.
則AE=AF=160.
∴臺(tái)風(fēng)影響該市持續(xù)的路程為:EF=2DE=2×$\sqrt{16{0}^{2}-12{8}^{2}}$=192(km).
∴臺(tái)風(fēng)影響該市的持續(xù)時(shí)間:t=192÷15=12.8(時(shí));
答:臺(tái)風(fēng)影響該城市的持續(xù)時(shí)間為12.8小時(shí);
(3)∵AD距臺(tái)風(fēng)中心最近,
∴該城市受到這次臺(tái)風(fēng)最大風(fēng)力為:12-(128÷20)=5.6(級(jí)).
點(diǎn)評(píng) 此題主要考查了勾股定理的應(yīng)用,本題是將實(shí)際問題轉(zhuǎn)化為直角三角形中的數(shù)學(xué)問題,可通過作輔助線構(gòu)造直角三角形,再把條件和問題轉(zhuǎn)化到直角三角形中,使問題解決.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{5}$ | B. | 2 | C. | $\sqrt{3}$ | D. | $\sqrt{6}$ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com