分析 (1)由BE為圓O的切線,BA為圓的弦,即∠EAB為圓弦切角,根據(jù)弦切角等于所夾弧所對(duì)的圓周角,可得出∠EBA=∠C,根據(jù)已知的∠EBC=2∠C,得到∠ABC=∠C,根據(jù)等角對(duì)等邊可得出AB=AC,得證;
(2)連接OA,由AB=AC,根據(jù)等弦對(duì)等劣弧得到A為弧BC的中點(diǎn),根據(jù)垂徑定理的逆定理得到OA垂直于BC,D為BC的中點(diǎn),再由∠EBA=∠C,由tan∠EBA的值得到tanC的值,即為tan∠ABC的值,在直角三角形ABD中,根據(jù)銳角三角函數(shù)定義得出AD與BD的比值,設(shè)AD=k,則有BD=2k,利用勾股定理表示出AB,再由BC=2BD,表示出BC,即可求出AB與BC的比值.
解答 解:(1)∵BE為圓O的切線,BA為圓的弦,
∴∠EBA為弦切角,
∴∠EBA=∠C,又∠EBC=2∠C,
∴∠EBC=2∠EBA,
∴∠ABC=∠C,
∴AB=AC;
(2)連接OA,
∵AB=AC,
∴$\widehat{AB}$=$\widehat{AC}$,
∴OA⊥BC,
∴D為BC的中點(diǎn),即BD=CD,
∵tan∠ABE=$\frac{1}{2}$,∠EBA=∠ABC,
∴tan∠ABC=$\frac{1}{2}$,
在Rt△ABD中,tan∠ABC=$\frac{AD}{BD}$=$\frac{1}{2}$,
設(shè)AD=k,則BD=2k,BC=4k,
在△ABD中,∠ADB=90°,
根據(jù)勾股定理得:AB=$\sqrt{{BD}^{2}{+AD}^{2}}$=$\sqrt{5}$k,
則$\frac{AB}{BC}$$\frac{\sqrt{5}k}{4k}$=$\frac{\sqrt{5}}{4}$.
點(diǎn)評(píng) 考查了切線的性質(zhì),等腰三角形的判定與性質(zhì),弦、圓心角及弧之間的關(guān)系,勾股定理,垂徑定理,圓周角定理,相似三角形的判定與性質(zhì),以及銳角三角函數(shù)定義,熟練掌握性質(zhì)及定理是解本題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 跳遠(yuǎn) | B. | 跳高 | C. | 擲鉛球 | D. | 擲標(biāo)槍 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com