欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

11.操作與證明:
把一個含45°角的直角三角板BEF和一個正方形ABCD擺放在一起,使三角板的直角頂點和正方形的頂點B重合,點E,F(xiàn)分別在正方形的邊CB,AB上,易知:AF=CE,AF⊥CE.(如圖1)(不要證明)
(1)將圖1中的直角三角板BEF繞點B順時針旋轉(zhuǎn)α度(0<α<45),連接AF,CE,(如圖2),試證明:AF=CE,AF⊥CE.
猜想與發(fā)現(xiàn):
(2)將圖2中的直角三角板BEF繞點B順時針繼續(xù)旋轉(zhuǎn),使BF落在BC邊上,連接AF,CE,(如圖3),點M,N分別為AF,CE的中點,連接MB,BN.
①MB,BN的數(shù)量關(guān)系是相等;
②MB,BN的位置關(guān)系是垂直.
變式與探究:
(3)圖1中的直角三角板BEF繞點B順時針旋轉(zhuǎn)180°,點M,N分別為DF,EF的中點,連接MA,MN,(如圖4),MA,MN的數(shù)量關(guān)系、位置關(guān)系又如何?為什么?

分析 (1)延長AF交EC于G,交BC于H,利用正方形ABCD的性質(zhì)和等腰△BEF的性質(zhì),證明△ABF≌△CBE,得到AF=CE,∠BAF=∠BCE,根據(jù)∠BAF+AHB=90°,∠AHB=∠CHG,所以∠BCE+∠CHG=90°,即可解答.
(2)①MB,BN的數(shù)量關(guān)系是相等;②MB,BN的位置關(guān)系是垂直;
(3)MA=MN,MA⊥MN,理由:如圖4,連接DE,利用正方形ABCD的性質(zhì)和等腰△BEF的性質(zhì),證明△ADF≌△CDE,得到DF=DE,∠1=∠2,利用在Rt△ADF中,點M是DF的中點,得到MA=$\frac{1}{2}$DF=MD=MF,再利用中位線的性質(zhì),得到得到MN=$\frac{1}{2}$DE,MN∥DE,通過角之間的等量代換和三角形內(nèi)角和,得到∠6=90°,從而得到∠7=∠6=90°,即可解答.

解答 解:(1)如圖2,延長AF交EC于G,交BC于H,

∵四邊形ABCD是正方形,
∴AB=BC,∠ABC=90°,
∴∠ABF+∠FBC=90°,
∵△BEF是等腰直角三角形,
∴BE=BF,∠EBF=90°,
∴∠CBE+∠FBC=90°,
∴∠ABF=∠CBE,
在△ABF和△CBE中,$\left\{\begin{array}{l}{AB=BC}\\{∠ABF=∠CBE}\\{BF=BE}\end{array}\right.$,
∴△ABF≌△CBE,
∴AF=CE,∠BAF=∠BCE,
∵∠BAF+AHB=90°,∠AHB=∠CHG,
∴∠BCE+∠CHG=90°,
∴AF⊥CE.
(2)①相等;②垂直.
故答案為:相等,垂直.
(3)MA=MN,MA⊥MN,
理由:如圖4,連接DE,

∵四邊形ABCD是正方形,
∴AB=BC=CD=DA,∠ABC=∠BCD=∠CDA=∠DAB=90°,
∵∵△BEF是等腰直角三角形,
∴BE=BF,∠EBF=90°,
∵點E、F分別在正方形CB、AB的延長線上,
∴AB+BF=CB+BE,即AF=CE,
∵$\left\{\begin{array}{l}{AD=CD}\\{∠DAF=∠DCE}\\{AF=DE}\end{array}\right.$,
∴△ADF≌△CDE,
∴DF=DE,∠1=∠2,
在Rt△ADF中,
∵點M是DF的中點,
∴MA=$\frac{1}{2}$DF=MD=MF,
∴∠1=∠3,
∵點N是EF的中點,
∴MN是△DEF的中位線,
∴MN=$\frac{1}{2}$DE,MN∥DE,
∴MA=MN,∠2=∠3,
∵∠2+∠4=∠ABC=90°,∠4=∠5,
∴∠3+∠5=90°,
∴∠6=180°-(∠3+∠5)=90°,
∴∠7=∠6=90°,MA⊥MN.

點評 本題考查了圖形的旋轉(zhuǎn)的性質(zhì)、全等三角形的性質(zhì)與判定、等腰三角形的性質(zhì),解決本題的關(guān)鍵是證明三角形全等,得到相等的邊與角,作輔助線也是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

5.已知x=$\frac{{\sqrt{5}-1}}{2}$,則x2+x+1=2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

6.地球繞太陽每小時轉(zhuǎn)動經(jīng)過的路程約為110000米,將110000用科學(xué)記數(shù)法表示為( 。
A.11×104B.0.11×107C.1.1×106D.1.1×105

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.計算:$\sqrt{12}+{2}^{-1}-4cos30°+|-\frac{1}{2}|$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

6.一個正方形的面積為1,那么以它的對角線為邊長的正方形的面積是2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.如圖①,在?ABCD中,AB=13,BC=50,點P從點B出發(fā),沿B-A-D-A運動.已知沿B-A運動時的速度為每秒13個單位長度,沿A-D-A運動時的速度為每秒8個單位長度.點Q從點 B出發(fā)沿BC方向運動,速度為每秒5個單位長度.若P、Q兩點同時出發(fā),當(dāng)點Q到達(dá)點C時,P、Q兩點同時停止運動.設(shè)點P的運動時間為t(秒).連結(jié)PQ.
(1)當(dāng)點P沿A-D-A運動時,求AP的長(用含t的代數(shù)式表示).
(2)過點Q作QR∥AB,交AD于點R,連結(jié)BR,如圖②.在點P沿B-A-D運動過程中,是否存在線段PQ掃過的圖形(陰影部分)被線段BR分成面積相等的兩部分的情況?若存在,求出所有t的值;若不存在,請說明理由.
(3)設(shè)點C、D關(guān)于直線PQ的對稱點分別為C′、D′,在點P沿B-A-D運動過程中,當(dāng)C′D′∥BC時,求t的值(直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在△ABC中,∠C=90°,AC=4,BC=3,點P從點A出發(fā),以每秒4個單位長度的速度沿折線AC-CB運動,到點B停止.當(dāng)點P不與△ABC的頂點重合時,過點P作其所在直角邊的垂線交AB 于點Q,再以PQ為斜邊作等腰直角三角形△PQR,且點R與△ABC的另一條直角邊始終在PQ同側(cè),設(shè)△PQR與△ABC重疊部分圖形的面積為S(平方單位).點P的運動時間為t(秒).
(1)求點P在AC邊上時PQ的長,(用含t的代數(shù)式表示);
(2)求點R到AC、PQ所在直線的距離相等時t的取值范圍;
(3)當(dāng)點P在AC邊上運動時,求S與t之間的函數(shù)關(guān)系式;
(4)直接寫出點R落在△ABC高線上時t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

20.課間,小明拿著老師的等腰三角板玩,不小心掉到兩墻之間,如圖,求證:△ADC≌△CEB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

1.如圖,A、B是⊙O上兩點,∠AOB=140°,P是⊙O上的一個動點,P不與點A、B重合,則∠APB=70°或110°.

查看答案和解析>>

同步練習(xí)冊答案