分析 首先根據(jù)平行四邊形的性質(zhì)可得AD∥BC,OA=OC.根據(jù)平行線的性質(zhì)可得∠EAO=∠FCO,∠AEO=∠CFO,進而可根據(jù)AAS定理證明△AEO≌△CFO,再根據(jù)全等三角形的性質(zhì)可得OE=OF.
解答 證明:∵四邊形ABCD是平行四邊形,
∴AD∥BC,OA=OC.
∴∠EAO=∠FCO,∠AEO=∠CFO,
在△AOE和△COF中,
$\left\{\begin{array}{l}{∠EAO=∠FCO}\\{∠AEO=∠CFO}\\{OA=OC}\end{array}\right.$,
∴△AEO≌△CFO(AAS),
∴OE=OF.
點評 此題主要考查了平行四邊形的性質(zhì)、全等三角形的性質(zhì)和判定;熟練掌握平行四邊形的性質(zhì),證明三角形全等是解決問題的關(guān)鍵.
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com