分析 在Rt△AOB中,先求OB、OA的長,根據(jù)直角三角形斜邊中線等于斜邊一半可知:PA=PO,P′A′=P′O,由等邊對(duì)等角得:∠AOP=∠PAO,∠OA′P′=∠A′OP′,由∠POP′=15°求得∠OA′P′=45°,根據(jù)三角函數(shù)求AA′=$\sqrt{3}$-$\sqrt{2}$.
解答 解:在Rt△AOB中,
∵∠AOB=90°,α=∠ABO=60°,
∴∠OAB=30°,
∴OB=$\frac{1}{2}$AB=$\frac{1}{2}$×2=1,OA=$\sqrt{{2}^{2}-{1}^{2}}$=$\sqrt{3}$,
∵P、P′分別是AB、A′B′的中點(diǎn),
∴PA=PO,P′A′=P′O,
∴∠AOP=∠PAO,∠OA′P′=∠A′OP′,
∴∠POP′=∠A′OP′-∠AOP=∠OA′P′-∠PAO,
∵∠POP′=15°
∴∠OA′P′-∠PAO=15°,
∵∠PAO=30°,
∴∠OA′P′=45°,
∴cos∠OA′P′=cos45°=$\frac{OA′}{A′B′}$,
∴OA′=$\frac{\sqrt{2}}{2}$×2=$\sqrt{2}$,
∴AA′=OA-OA′=$\sqrt{3}$-$\sqrt{2}$,
故答案為:$\sqrt{3}-\sqrt{2}$.
點(diǎn)評(píng) 本題是勾股定理的應(yīng)用,考查了勾股定理在實(shí)際問題中的應(yīng)用,本題是梯形問題,要明確無論梯形如何移動(dòng),梯子的長不變.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 6 | B. | 7 | C. | 8 | D. | 9 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | y=1-$\sqrt{2}$x2 | B. | y=2(x-1)2+4 | C. | y=$\frac{1}{2}$(x-1)(x+4) | D. | y=(x-2)2-x2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com