分析 延長(zhǎng)CB到G,使BG=DF,連接AG,易證△ADF≌△ABG,得∠5=∠G,∠1=∠3,進(jìn)而證明∠FAB=∠EAG,進(jìn)而證明AE=EB+BG=EB+DF.
解答 證明:延長(zhǎng)CB到G,使BG=DF,連接AG(如圖),![]()
∵AD=AB,∠D=∠ABG=90°,
∵四邊形ABCD是正方形,
∴AD=AB,∠D=∠ABG=90°,
在△ADF和△ABG中,
$\left\{\begin{array}{l}{AD=AB}\\{∠D=∠ABG}\\{DF=BG}\end{array}\right.$
∴△ADF≌△ABG(SAS),
∴∠5=∠G,∠1=∠3,
∵∠1=∠2,
∴∠2=∠3,
∴∠2+∠4=∠3+∠4,
即∠FAB=∠EAG,
∵CD∥AB,
∴∠5=∠FAB=∠EAG,
∴∠EAG=∠G,
∴AE=EB+BG=EB+DF.
點(diǎn)評(píng) 本題考查了正方形各邊長(zhǎng)相等、各內(nèi)角為直角的性質(zhì),全等三角形的判定,全等三角形對(duì)應(yīng)角相等的性質(zhì),本題中求證∠EAG=∠G是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 18 | B. | $\sqrt{61}$ | C. | 2$\sqrt{61}$ | D. | 12 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\sqrt{2}$ | B. | $\frac{3}{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\sqrt{9}=±3$ | B. | ${(-\sqrt{4})^2}=16$ | C. | $\sqrt{{{(-3)}^2}}=3$ | D. | $-\sqrt{-\frac{81}{25}}=\frac{9}{5}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com