分析 (1)DE⊥BF,延長DE交BF于G.易證∠ADC=∠CBM.可得∠CDE=∠EBF.即可得∠EGB=∠C=90゜,則可證得DE⊥BF;
(2)DE∥BF,連接BD,易證∠NDC+∠MBC=180゜,則可得∠EDC+∠CBF=90゜,繼而可證得∠EDC+∠CDB+∠CBD+∠FBC=180゜,則可得DE∥BF.
解答 解:(1)DE⊥BF,
延長DE交BF于點G
∵∠A+∠ABC+∠C+∠ADC=360°
又∵∠A=∠C=90°,
∴∠ABC+∠ADC=180°
∵∠ABC+∠MBC=180°
∴∠ADC=∠MBC,
∵DE、BF分別平分∠ADC、∠MBC
∴∠EDC=$\frac{1}{2}$∠ADC,∠EBG=$\frac{1}{2}$∠MBC,
∴∠EDC=∠EBG,
∵∠EDC+∠DEC+∠C=180°
∠EBG+∠BEG+∠EGB=180°
又∵∠DEC=∠BEG∴∠EGB=∠C=90
∴DE⊥BF;
(2)DE∥BF,
連接BD,
∵DE、BF分別平分∠NDC、∠MBC
∴∠EDC=$\frac{1}{2}$∠NDC,∠FBC=$\frac{1}{2}$∠MBC,
∵∠ADC+∠NDC=180°
又∵∠ADC=∠MBC
∴∠MBC+∠NDC=180°
∴∠EDC+∠FBC=90°,
∵∠C=90°∴∠CDB+∠CBD=90°
∴∠EDC+∠CDB+∠FBC+∠CBD=180°
即∠EDB+∠FBD=180°,
∴DE∥BF.
點評 此題考查了三角形內角和定理,平行線的性質以及三角形外角的性質.此題難度適中,注意掌握輔助線的作法,注意數形結合思想的應用.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
| A. | y=-2x2+12x-16 | B. | y=-2x2-12x-16 | C. | y=-2x2-12x+16 | D. | y=2x2+12x+16 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com