分析 (1)分別令解析式y(tǒng)=-$\frac{1}{2}$x+2中x=0和y=0,求出點(diǎn)B、點(diǎn)C的坐標(biāo);設(shè)二次函數(shù)的解析式為y=ax2+bx+c,將點(diǎn)A、B、C的坐標(biāo)代入解析式,求出a、b、c的值,進(jìn)而求得解析式;
(2)設(shè)出M點(diǎn)的坐標(biāo)為(a,-$\frac{1}{2}$a+2),就可以表示出P的坐標(biāo),由四邊形PCDB的面積=S△BCD+S△CPM+S△PMB求出S與a的關(guān)系式,由二次函數(shù)的性質(zhì)就可以求出結(jié)論;
(3)由(2)的解析式求出頂點(diǎn)坐標(biāo),再由勾股定理求出CD的值,再以點(diǎn)C為圓心,CD為半徑作弧交對(duì)稱軸于Q1,以點(diǎn)D為圓心CD為半徑作圓交對(duì)稱軸于點(diǎn)Q2,Q3,作CE垂直于對(duì)稱軸與點(diǎn)E,由等腰三角形的性質(zhì)及勾股定理就可以求出結(jié)論.
解答 解:(1)令x=0,可得y=2,
令y=0,可得x=4,
即點(diǎn)B(4,0),C(0,2);
設(shè)二次函數(shù)的解析式為y=ax2+bx+c,
將點(diǎn)A、B、C的坐標(biāo)代入解析式得,
$\left\{\begin{array}{l}{a-b+c=0}\\{16a+4b+c=0}\\{c=2}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a=-\frac{1}{2}}\\{b=\frac{3}{2}}\\{c=2}\end{array}\right.$,
即該二次函數(shù)的關(guān)系式為y=-$\frac{1}{2}$x2+$\frac{3}{2}$x+2;![]()
(2)如圖1,過點(diǎn)P作PN⊥x軸于點(diǎn)N,交BC于點(diǎn)M,過點(diǎn)C作CE⊥PN于E,
設(shè)M(a,-$\frac{1}{2}$a+2),P(a,-$\frac{1}{2}$a2+$\frac{3}{2}$a+2),
∴PM=-$\frac{1}{2}$a2+$\frac{3}{2}$a+2-(-$\frac{1}{2}$a+2)=-$\frac{1}{2}$a2+2a(0≤x≤4).
∵y=-$\frac{1}{2}$x2+$\frac{3}{2}$x+2=-$\frac{1}{2}$(x-$\frac{3}{2}$)2+$\frac{25}{8}$,
∴點(diǎn)D的坐標(biāo)為:($\frac{3}{2}$,0),
∵S四邊形PCDB=S△BCD+S△CPM+S△PMB=$\frac{1}{2}$BD•OC+$\frac{1}{2}$PM•CE+$\frac{1}{2}$PM•BN,
=$\frac{5}{2}$+$\frac{1}{2}$a(-$\frac{1}{2}$a2+2a)+$\frac{1}{2}$(4-a)(-$\frac{1}{2}$a2+2a),
=-a2+4a+$\frac{5}{2}$(0≤x≤4).
=-(a-2)2+$\frac{13}{2}$
∴a=2時(shí),S四邊形PCDB的面積最大=$\frac{13}{2}$,
∴-$\frac{1}{2}$a2+$\frac{3}{2}$a+2=-$\frac{1}{2}$×22+$\frac{3}{2}$×2+2=3,
∴點(diǎn)P坐標(biāo)為:(2,3),
∴當(dāng)點(diǎn)P運(yùn)動(dòng)到(2,3)時(shí),四邊形PCDB的面積最大,最大值為$\frac{13}{2}$;
(3)如圖2,∵拋物線的對(duì)稱軸是x=$\frac{3}{2}$.![]()
∴OD=$\frac{3}{2}$.
∵C(0,2),
∴OC=2.
在Rt△OCD中,由勾股定理,得
CD=$\frac{5}{2}$.
∵△CDQ是以CD為腰的等腰三角形,
∴CQ1=DQ2=DQ3=CD.
如圖2所示,作CE⊥對(duì)稱軸于E,
∴EQ1=ED=2,
∴DQ1=4.
∴Q1($\frac{3}{2}$,4),Q2($\frac{3}{2}$,$\frac{5}{2}$),Q3($\frac{3}{2}$,-$\frac{5}{2}$).
點(diǎn)評(píng) 本題考查了二次函數(shù)的綜合運(yùn)用,涉及了待定系數(shù)法求二次函數(shù)的解析式的運(yùn)用,勾股定理的運(yùn)用,等腰三角形的性質(zhì)的運(yùn)用,四邊形的面積的運(yùn)用,解答時(shí)求出函數(shù)的解析式是關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com