分析 (1)由△ABD與△BCE都為等邊三角形,利用等邊三角形的性質(zhì)得到兩條邊對(duì)應(yīng)相等,兩個(gè)角相等都為60°,利用SAS即可得到△ABE與△DBC全等,進(jìn)而得到∠BDN=∠BEM,利用全等三角形的對(duì)應(yīng)角相等得到一對(duì)角相等,再由∠ABD=∠EBC=60°,利用平角的定義得到∠MBE=∠NBC=60°,再由EB=CB,利用ASA可得出△EMB與△CNB全等,同理△DBN≌△ABM;
(2)利用全等三角形的對(duì)應(yīng)邊相等得到MB=NB,再由∠MBE=60°,利用有一個(gè)角為60°的等腰三角形為等邊三角形可得出△BMN為等邊三角形.
解答 解:(1)△ABE≌△DBC,△DBN≌△ABM,△EMB≌△CNB三對(duì);
∵等邊△ABD和等邊△BCE,∴△MBE≌△NBC
∴AB=DB,BE=BC,∠ABD=∠EBC=60°,
∴∠ABE=∠DBC=120°,
在△ABE和△DBC中,
$\left\{\begin{array}{l}{AB=DB}\\{∠ABE=∠DBC}\\{BE=BC}\end{array}\right.$,
∴△ABE≌△DBC(SAS),
∴∠BDN=∠BAM;∠AEB=∠DCB,
又∵∠ABD=∠EBC=60°,
∴∠MBE=180°-60°-60°=60°,
即∠MBE=∠NBC=60°,
在△MBE和△NBC中,
$\left\{\begin{array}{l}{∠AEB=∠DCB}\\{EB=BC}\\{∠MBE=∠NBC}\end{array}\right.$,
∴△MBE≌△NBC,
在△MBA和△NBD中,
$\left\{\begin{array}{l}{∠DBN=∠ABM}\\{AB=DB}\\{∠BAM=∠BDN}\end{array}\right.$,
∴△MBE≌△NBC;
(2)由(1)證得△MBE≌△NBC
∴BM=BN,∠MBE=60°,
∴△BMN為等邊三角形.
點(diǎn)評(píng) 此題考查了等邊三角形的判定與性質(zhì),以及全等三角形的判定與性質(zhì),熟練掌握判定與性質(zhì)是解本題的關(guān)鍵.同時(shí)做第二問(wèn)時(shí)注意利用第一問(wèn)已證的結(jié)論.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | x>0 | B. | x<0 | C. | -2<x<0 | D. | x<-2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com