分析 連接BE交AD于O,作AH⊥BC于H.首先證明AD垂直平分線段BE,△BCE是直角三角形,求出BC、BE,在Rt△BCE中,利用勾股定理即可解決問題.
解答 解:如圖連接BE交AD于O,作AH⊥BC于H.
在Rt△ABC中,∵AC=4,AB=3,![]()
∴BC=$\sqrt{{3}^{2}+{4}^{2}}$=5,
∵CD=DB,
∴AD=DC=DB=$\frac{5}{2}$,
∵$\frac{1}{2}$•BC•AH=$\frac{1}{2}$•AB•AC,
∴AH=$\frac{12}{5}$,
∵AE=AB,DE=DB=DC,
∴AD垂直平分線段BE,△BCE是直角三角形,
∵$\frac{1}{2}$•AD•BO=$\frac{1}{2}$•BD•AH,
∴OB=$\frac{12}{5}$,
∴BE=2OB=$\frac{24}{5}$,
在Rt△BCE中,EC=$\sqrt{B{C}^{2}-B{E}^{2}}$=$\frac{7}{5}$,
故答案為:$\frac{7}{5}$.
點評 本題考查翻折變換、直角三角形的斜邊中線的性質、勾股定理等知識,解題的關鍵是學會利用面積法求高.
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
| 星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
| 增減 | +5 | -2 | -4 | +13 | -10 | +16 | -9 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com