分析 (1)根據△ABC,△AMN為等邊三角形,得到AB=AC,AM=AN且∠BAC=∠MAN=60°從而得到∠BAC-∠CAM=∠MAN-∠CAM,即∠BAM=∠CAN,證明△BAM≌△CAN,即可得到BM=CN.
(2)根據△ABC,△AMN為等腰三角形,得到AB:BC=1:1且∠ABC=∠AMN,根據相似三角形的性質得到$\frac{AB}{AM}=\frac{AC}{AN}$,利用等腰三角形的性質得到∠BAC=∠MAN,根據相似三角形的性質即可得到結論;
(3)如圖3,連接AB,AN,根據正方形的性質得到∠ABC=∠BAC=45°,∠MAN=45°,根據相似三角形的性質得出$\frac{BM}{CN}=\frac{AB}{AC}$,得到BM=2,CM=8,再根據勾股定理即可得到答案.
解答 解:(1)NC∥AB,理由如下:
∵△ABC與△MN是等邊三角形,
∴AB=AC,AM=AN,∠BAC=∠MAN=60°,
∴∠BAM=∠CAN,
在△ABM與△ACN中,$\left\{\begin{array}{l}{AB=AC}&{\;}\\{∠BAM=∠CAN}&{\;}\\{AM=AN}&{\;}\end{array}\right.$,
∴△ABM≌△ACN(SAS),
∴∠B=∠ACN=60°,
∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,
∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,
∴CN∥AB;
故答案為:CN∥AB;
(2)∠ABC=∠ACN,理由如下:
∵$\frac{AB}{BC}=\frac{AM}{MN}$=1且∠ABC=∠AMN,
∴△ABC~△AMN
∴$\frac{AB}{AM}=\frac{AC}{AN}$,
∵AB=BC,
∴∠BAC=$\frac{1}{2}$(180°-∠ABC),
∵AM=MN
∴∠MAN=$\frac{1}{2}$(180°-∠AMN),
∵∠ABC=∠AMN,
∴∠BAC=∠MAN,
∴∠BAM=∠CAN,![]()
∴△ABM~△ACN,
∴∠ABC=∠ACN;
(3)如圖3,連接AB,AN,
∵四邊形ADBC,AMEF為正方形,
∴∠ABC=∠BAC=45°,∠MAN=45°,
∴∠BAC-∠MAC=∠MAN-∠MAC
即∠BAM=∠CAN,
∵$\frac{AB}{AC}=\frac{AM}{AN}$=$\sqrt{2}$,
∴$\frac{AB}{AM}=\frac{AC}{AN}$,
∴△ABM~△ACN
∴$\frac{BM}{CN}=\frac{AB}{AC}$,
∴$\frac{CN}{BM}=\frac{AC}{AB}$=cos45°=$\frac{\sqrt{2}}{2}$,
∴$\frac{\sqrt{2}}{BM}$=$\frac{\sqrt{2}}{2}$,
∴BM=2,∴CM=BC-BM=8,
在Rt△AMC,
AM=$\sqrt{A{C}^{2}+M{C}^{2}}$=$\sqrt{1{0}^{2}+{8}^{2}}$=2$\sqrt{41}$,
∴EF=AM=2$\sqrt{41}$.
點評 本題是四邊形綜合題目,考查了正方形的性質、等邊三角形的性質、等腰三角形的性質、全等三角形的性質定理和判定定理、相似三角形的性質定理和判定定理等知識;本題綜合性強,有一定難度,證明三角形全等和三角形相似是解決問題的關鍵.
科目:初中數學 來源: 題型:解答題
| 年份 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
| 年增長率 | 31% | 27% | 32% | 35% | 52% |
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
| A. | 25° | B. | 30° | C. | 40° | D. | 50° |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
| A. | x>1 | B. | x>1且x≠2 | C. | x≥1且x≠2 | D. | x≠2 |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com