分析 (1)根據(jù)平行線的性質(zhì)和等腰三角形的性質(zhì)證明∠B=∠DPB,∠C=∠EPC,進(jìn)而可得DB=DP,PE=EC,從而可得四邊形ADPE的周長=AD+DP+PE+AE=AB+AC;
(2)當(dāng)P運動到BC中點時,四邊形ADPE是菱形;首先證明四邊形ADPE是平行四邊形,再證明DP=PE即可得到四邊形ADPE是菱形;
(3)P運動到∠A的平分線上時,四邊形ADPE是菱形,首先證明四邊形ADPE是平行四邊形,再根據(jù)平行線的性質(zhì)可得∠1=∠3,從而可證出∠2=∠3,進(jìn)而可得AE=EP,然后可得四邊形ADPE是菱形.
解答 解:(1)∵PD∥AC,PE∥AB,
∴∠DPB=∠C,∠EPC=∠B,
∵AB=AC,
∴∠B=∠C,
∴∠B=∠DPB,∠C=∠EPC,
∴DB=DP,PE=EC,
∴四邊形ADPE的周長是:AD+DP+PE+AE=AB+AC=12;
(2)當(dāng)P運動到BC中點時,四邊形ADPE是菱形;
∵PD∥AC,PE∥AB,
∴四邊形ADPE是平行四邊形,
∴PD=AE,PE=AD,
∵PD∥AC,PE∥AB,
∴∠DPB=∠C,∠EPC=∠B,
∵P是BC中點,
∴PB=PC,
在△DBP和△EPC中,
$\left\{\begin{array}{l}{∠B=∠EPC}\\{BP=CP}\\{∠C=∠DPB}\end{array}\right.$,
∴△DBP≌△EPC(ASA),
∴DP=EC,
∵EC=PE,
∴DP=EP,
∴四邊形ADPE是菱形;
(3)P運動到∠A的平分線上時,四邊形ADPE是菱形,
∵PD∥AC,PE∥AB,![]()
∴四邊形ADPE是平行四邊形,
∵AP平分∠BAC,
∴∠1=∠2,
∵AB∥EP,
∴∠1=∠3,
∴∠2=∠3,
∴AE=EP,
∴四邊形ADPE是菱形.
點評 此題主要考查了菱形的判定,等腰三角形的性質(zhì),關(guān)鍵是掌握一組鄰邊相等的平行四邊形是菱形.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com