分析 (1)要證明方程總有兩個(gè)不相等的實(shí)數(shù)根,那么只要證明△>0即可.
(2)根據(jù)根與系數(shù)的關(guān)系可知x1+x2=-(4m+1),結(jié)合x1x2=2m-1,由x1=2x2得到方程,求出m的值即可.
解答 (1)證明:△=(4m+1)2-4(2m-1)
=16m2+8m+1-8m+4=16m2+5>0,
∴不論m為任何實(shí)數(shù),方程總有兩個(gè)不相等的實(shí)數(shù)根.
(2)∵該方程的兩個(gè)根為x1,x2,
∴x1+x2=-(4m+1),x1x2=2m-1,
∵x1=2x2,
∴-$\frac{1}{3}$(4m+1)=$\sqrt{\frac{2m-1}{2}}$
則32m2-2m+11=0,
此方程無解.
不存在實(shí)數(shù)m,使x1=2x2.
點(diǎn)評(píng) 本題考查了一元二次方程根的情況與判別式△的關(guān)系:(1)△>0?方程有兩個(gè)不相等的實(shí)數(shù)根;(2)△=0?方程有兩個(gè)相等的實(shí)數(shù)根;(3)△<0?方程沒有實(shí)數(shù)根.以及根與系數(shù)的關(guān)系.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com