分析 (1)根據(jù)△ABC和△AED是等邊三角形,D是BC的中點(diǎn),ED∥CF,求證△ABD≌△CAF,進(jìn)而求證四邊形EDCF是平行四邊形即可;
(2)①根據(jù)△ABC和△AED是等邊三角形,D是BC的中點(diǎn),ED∥CF,求證△ABD≌△CAF,進(jìn)而求證四邊形EDCF是平行四邊形,再得出∠EDC=90°,證明矩形即可;
②根據(jù)分析得出DC>ED,故不能為菱形.
解答 解:(1)∵△ABC和△ADE是等邊三角形,
∴∠ABC=∠ADE=∠CAB=60°,AB=CA,
∴∠BDA=∠ADE+∠BDE=60°+∠BDE,
∠AFC=∠ABC+∠BCF=60°+∠BCF,
∵CF∥DE,
∴∠BDE=∠BCF,
∴∠BDA=∠AFC,
在△BAD和△ACF中
$\left\{\begin{array}{l}{∠ABD=∠CAF}\\{∠BDA=∠AFC}\\{AB=CA}\end{array}\right.$,
∴△BAD≌△ACF(AAS),
∴AD=CF,
∵AD=DE,
∴DE$\stackrel{∥}{=}$CF,
∴四邊形DCFE是平行四邊形;
(2)①∵△ABC和△ADE是等邊三角形,
∴∠ABC=∠ADE=∠BAC=60°,AB=CA,
∴∠BDA=180°-∠ADE-∠GDE=120°-∠GDE,
∠AFC=180°-∠ABC-∠BCF=120°-∠BCF,
∵CF∥DE,
∴∠GDE=∠BCF,
∴∠BDA=∠AFC,
在△BAD和△ACF中,
$\left\{\begin{array}{l}{∠ABD=∠CAF=120°}\\{∠BDA=∠AFC}\\{AB=CA}\end{array}\right.$,
∴△BAD≌△ACF(AAS),
∴AD=CF,
∵AD=DE,
∴DE$\stackrel{∥}{=}$CF,
∴四邊形DCFE是平行四邊形,
∵DB=AB=2,∠ADB+∠BAD=∠ABC=60°,
∴∠ADB=∠BAD=30°,
∴∠EDC=∠ADE+∠ADB=90°,
∴平行四邊形DCFE是矩形;
②四邊形DCFE不可能成為菱形,
∵t>0,
∴BD>0
在△BAD中,AB+BD>AD,
∵△ABC和△ADE是等邊三角形,
∴AD=DE,AB=BC,
∴BC+BD>DE,即DC>ED,
∴四邊形DCFE不可能成為菱形.
點(diǎn)評(píng) 此題主要考查學(xué)生對(duì)平行四邊形的判定和性質(zhì)、全等三角形的判定和性質(zhì)、等邊三角形的性質(zhì)的理解和掌握.此題涉及到的知識(shí)點(diǎn)較多,綜合性較強(qiáng),難度較大.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\left\{\begin{array}{l}{x=-1}\\{y=2}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x=1}\\{y=-1}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{\sqrt{5}}{5}$ | B. | $\sqrt{5}$ | C. | $\frac{1}{2}$ | D. | 2 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com