欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

4.等腰三角形的兩邊長(zhǎng)為10和12,則周長(zhǎng)為32或34,底邊長(zhǎng)的高是8或$\sqrt{119}$,面積是48或5$\sqrt{119}$.

分析 需要分類討論:確定腰和底邊的長(zhǎng)度,然后再求底邊上的高及面積.

解答 解:①當(dāng)AB=AC=10時(shí),BC=12,則周長(zhǎng)=10+10+12=32.
∵等腰△ABC,AD⊥BC,
∴BD=CD=6,
∴AD=$\sqrt{A{B}^{2}-B{D}^{2}}$=$\sqrt{1{0}^{2}-{6}^{2}}$=8,即高為8.
∴S△ABC=$\frac{1}{2}$BC•AD=$\frac{1}{2}$×12×8=48.
②當(dāng)AB=AC=12時(shí),BC=10,則周長(zhǎng)=10+12+12=34.
∵等腰△ABC,AD⊥BC,
∴BD=CD=5,
∴AD=$\sqrt{A{B}^{2}-B{D}^{2}}$=$\sqrt{1{2}^{2}-{5}^{2}}$=$\sqrt{119}$,即高為$\sqrt{119}$.
∴S△ABC=$\frac{1}{2}$BC•AD=$\frac{1}{2}$×10×$\sqrt{119}$=5$\sqrt{119}$.
故答案是:32或34;8或$\sqrt{119}$;48或5$\sqrt{119}$.

點(diǎn)評(píng) 本題主要考查等腰三角形的性質(zhì)、勾股定理、三角形三邊關(guān)系,關(guān)鍵在于根據(jù)有關(guān)性質(zhì)確定等腰三角形的腰長(zhǎng)和底邊長(zhǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

14.已知關(guān)于x的一元二次方程x2-(2m+1)x+4(m-$\frac{1}{2}$)=0.
(1)判斷這個(gè)一元二次方程的根的情況;
(2)對(duì)任意實(shí)數(shù)m,這個(gè)一元二次方程都有一個(gè)相同的解,求這個(gè)解;
(3)若等腰三角形的一邊長(zhǎng)為2.5,另兩條邊的長(zhǎng)恰好是這個(gè)方程的兩個(gè)根,求這個(gè)等腰三角形的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.解方程:x3-2x2-x+2=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

12.在直角坐標(biāo)系中,正方形ABCD各頂點(diǎn)的坐標(biāo)分別是A(1,2),B(-1,2),C(-1,0),D(1,0),以坐標(biāo)原點(diǎn)為位似中心,將正方形ABCD放大,使放大后的正方形A′B′C′D′的邊長(zhǎng)是正方形ABCD的邊長(zhǎng)的3倍.
(1)寫出點(diǎn)A′,B′,C′,D′的坐標(biāo);
(2)直線AC與直線B′D′互相垂直嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.計(jì)算:($\frac{2}{a-1}$-$\frac{1}{a}$)÷$\frac{{a}^{2}+a}{{a}^{2}-2a+1}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.如圖,拋物線y=ax2-2ax+c(a≠0)與y軸交于點(diǎn)C(0,4),與x軸交于點(diǎn)A、B,點(diǎn)A坐標(biāo)為(4,0).
(1)求該拋物線的解析式;
(2)拋物線的頂點(diǎn)為N,在x軸上找一點(diǎn)K,使CK+KN最小,并求出點(diǎn)K的坐標(biāo);
(3)點(diǎn)Q是線段AB上的動(dòng)點(diǎn),過點(diǎn)Q作QE∥AC,交BC于點(diǎn)E,連接CQ.當(dāng)△CQE的面積最大時(shí),求點(diǎn)Q的坐標(biāo);
(4)若平行于x軸的動(dòng)直線l與該拋物線交于點(diǎn)P,與直線AC交于點(diǎn)F,點(diǎn)D的坐標(biāo)為(2,0).問:是否存在這樣的直線l,使得△ODF是等腰三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.如圖,已知拋物線y=$\frac{\sqrt{2}}{8}$(x+2)(x-4)與x軸交于點(diǎn)A、B(點(diǎn)A位于點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,CD∥x軸交拋物線于點(diǎn)D,M為拋物線的頂點(diǎn).
(1)求點(diǎn)A、B、C的坐標(biāo);
(2)設(shè)動(dòng)點(diǎn)N(-2,n),求使MN+BN的值最小時(shí)n的值;
(3)P是拋物線上一點(diǎn),請(qǐng)你探究:是否存在點(diǎn)P,使以P、A、B為頂點(diǎn)的三角形與△ABD相似(△PAB與△ABD不重合)?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

13.從-1,1,-2三個(gè)數(shù)中任取一個(gè)數(shù)作為一次函數(shù)y=kx+3中的k值,則所得一次函數(shù)的圖象不經(jīng)過第三象限的概率是$\frac{2}{3}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

14.如圖,正方形ABCD的邊長(zhǎng)為12,其內(nèi)部有一個(gè)小正方形EFGH,其中E、F、H分別在BC,CD,AE上.若BE=9,則小正方形EFGH的邊長(zhǎng)$\frac{15}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案