分析 先由勾股定理求出b,再根據(jù)三角函數(shù)的定義即可求解.
解答 解:∵在Rt△ABC中,∠C=90°,a=2,c=6,
∴b=$\sqrt{{c}^{2}-{a}^{2}}$=4$\sqrt{2}$,
∴sinA=$\frac{a}{c}$=$\frac{2}{6}$=$\frac{1}{3}$,
cosA=$\frac{c}$=$\frac{4\sqrt{2}}{6}$=$\frac{2\sqrt{2}}{3}$,
tanA=$\frac{a}$=$\frac{2}{4\sqrt{2}}$=$\frac{\sqrt{2}}{4}$.
點(diǎn)評(píng) 本題考查了銳角三角函數(shù)的定義:在Rt△ABC中,∠C=90°,
(1)正弦:我們把銳角A的對(duì)邊a與斜邊c的比叫做∠A的正弦,記作sinA.即sinA=∠A的對(duì)邊:斜邊=a:c;
(2)余弦:銳角A的鄰邊b與斜邊c的比叫做∠A的余弦,記作cosA.即cosA=∠A的鄰邊:斜邊=b:c;
(3)正切:銳角A的對(duì)邊a與鄰邊b的比叫做∠A的正切,記作tanA.即tanA=∠A的對(duì)邊:∠A的鄰邊=a:b.
也考查了勾股定理.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | c>a>b | B. | c>b>a | C. | a>c>b | D. | a>b>c |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com