分析 (1)將A(3,2)分別代入y=$\frac{k}{x}$,y=ax中,得a、k的值,進(jìn)而可得正比例函數(shù)和反比例函數(shù)的表達(dá)式;
(2)觀察圖象,得在第一象限內(nèi),當(dāng)0<x<3時(shí),反比例函數(shù)的圖象在正比例函數(shù)的上方;故反比例函數(shù)的值大于正比例函數(shù)的值;
(3)由S△OMB=S△OAC=$\frac{1}{2}$×|k|=3,可得S矩形OBDC為12,即OC•OB=12,進(jìn)而可得m、n的值,故可得BM與DM的大。槐容^可得其大小關(guān)系.
解答 解:(1)∵將A(3,2)分別代入y=$\frac{k}{x}$,y=ax中,得:2=$\frac{k}{3}$,3a=2,
∴k=6,a=$\frac{2}{3}$,
∴反比例函數(shù)的表達(dá)式為:y=$\frac{6}{x}$,
正比例函數(shù)的表達(dá)式為y=$\frac{2}{3}$x.
(2)∵$\left\{\begin{array}{l}y=\frac{2}{3}x\\ y=\frac{6}{x}\end{array}\right.$,解得$\left\{\begin{array}{l}x=3\\ y=2\end{array}\right.$,
∴C(3,2)
觀察圖象,得在第一象限內(nèi),當(dāng)0<x<3時(shí),反比例函數(shù)的值大于正比例函數(shù)的值;
(3)BM=DM
理由:∵M(jìn)N∥x軸,AC∥y軸,
∴四邊形OCDB是平行四邊形,
∵x軸⊥y軸,
∴?OCDB是矩形.
∵M(jìn)和A都在雙曲線y=$\frac{6}{x}$上,
∴BM×OB=6,OC×AC=6,
∴S△OMB=S△OAC=$\frac{1}{2}$×|k|=3,
又∵S四邊形OADM=6,
∴S矩形OBDC=S四邊形OADM+S△OMB+S△OAC=3+3+6=12,
即OC•OB=12,
∵OC=3,
∴OB=4,
即n=4
∴m=$\frac{6}{n}$=$\frac{3}{2}$,
∴MB=$\frac{3}{2}$,MD=3-$\frac{3}{2}$=$\frac{3}{2}$,
∴MB=MD.
點(diǎn)評(píng) 此題考查的是反比例函數(shù)綜合題及正比例函數(shù)等多個(gè)知識(shí)點(diǎn).此題難度稍大,綜合性比較強(qiáng),注意對(duì)各個(gè)知識(shí)點(diǎn)的靈活應(yīng)用.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2.5×108 | B. | 25×106 | C. | 0.25×108 | D. | 2.5×107 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com