分析 利用“HL”證明△BED和△CFD全等,再根據(jù)全等三角形對(duì)應(yīng)角相等可得∠B=∠C,然后根據(jù)等角對(duì)等邊得到AB=AC,再求得∠B=60°,即可解答.
解答 證明:∵D是BC的中點(diǎn),
∴BD=CD,
∵DE⊥AB,DF⊥AC,
∴△BED和△CFD都是直角三角形,
在△BED和△CFD中,
$\left\{\begin{array}{l}{BD=CD}\\{BE=CF}\end{array}\right.$,
∴△BED≌△CFD(HL),
∴∠B=∠C,
∴AB=AC(等角對(duì)等邊).
∵∠BDE=30°,DE⊥AB,
∴∠B=60°,
∴△ABC是等邊三角形.
點(diǎn)評(píng) 本題考查了直角三角形全等的判定與性質(zhì),等角對(duì)等邊的性質(zhì),等邊三角形的判定,解題的關(guān)鍵是證明△BED≌△CFD.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | a>1或a=$\frac{3}{4}$ | B. | a>1 | C. | a>1或a=-3 | D. | a>1或a=$\frac{3}{4}$或a=-3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | x=1 | B. | x=2 | C. | x=-1 | D. | x=-2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 200 | B. | 100 | C. | 150 | D. | 20 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com