分析 如圖2中,作NF⊥CD于F.設(shè)DM=x,則AM=EM=10-x,利用勾股定理求出x,再利用△DME∽△FEN,得$\frac{DE}{FN}$=$\frac{EM}{EN}$,求出EN,EM,求出tan∠AMN,再證明∠EHG=∠AMN即可解決問(wèn)題.
解答 解:
如圖2中,作NF⊥CD于F.設(shè)DM=x,則AM=EM=10-x,
∵DE=EC,AB=CD=8$\sqrt{3}$,
∴DE=$\frac{1}{2}$CD=4$\sqrt{3}$,
在RT△DEM中,∵DM2+DE2=EM2,
∴(4$\sqrt{3}$)2+x2=(10-x)2,
解得x=2.6,
∴DM=2.6,AM=EM=7.4,
∵∠DEM+∠NEF=90°,∠NEF+∠ENF=90°,
∴∠DEM=∠ENF,∵∠D=∠EFN=90°,
∴△DME∽△FEN,
∴$\frac{DE}{FN}$=$\frac{EM}{EN}$,
∴$\frac{4\sqrt{3}}{10}$=$\frac{7.4}{EN}$,
∴EN=$\frac{37}{6}$$\sqrt{3}$,
∴AN=EN=$\frac{37}{6}$$\sqrt{3}$,
∴tan∠AMN=$\frac{AN}{AM}$=$\frac{5}{6}$$\sqrt{3}$,
如圖3中,
∵M(jìn)E⊥EN,HG⊥EN,
∴EM∥GH,
∴∠NME=∠NHG,
∵∠NME=∠AMN,∠EHG=∠NHG,
∴∠AMN=∠EHG,
∴tan∠EHG=tan∠AMN=$\frac{5}{6}$$\sqrt{3}$.
方法二,tan∠EHG=tan∠EMN=$\frac{EN}{EM}$=$\frac{BC}{DE}$.
故答案為$\frac{5}{6}$$\sqrt{3}$.
點(diǎn)評(píng) 本題考查翻折變換、勾股定理、相似三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)把問(wèn)題轉(zhuǎn)化,證明∠AMN=∠EHG是關(guān)鍵,屬于中考填空題中的壓軸題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | x+$\frac{1}{y}$=2 | B. | xy+5=-4 | C. | 3x2+y=8 | D. | x+$\frac{y}{4}$=2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 3個(gè) | B. | 2個(gè) | C. | 1個(gè) | D. | 0個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 0>a>b | B. | 0>b>a | C. | b>a>0 | D. | a>b>0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com