分析 作CE⊥y軸于點(diǎn)E,交雙曲線于點(diǎn)G.作DF⊥x軸于點(diǎn)F,易證△OAB≌△FDA≌△BEC,求得A、B的坐標(biāo),根據(jù)全等三角形的性質(zhì)可以求得C、D的坐標(biāo),從而利用待定系數(shù)法求得反比例函數(shù)的解析式,進(jìn)而求得G的坐標(biāo),則m的值即可求解.
解答
解:作CE⊥y軸于點(diǎn)E,交雙曲線于點(diǎn)G.作DF⊥x軸于點(diǎn)F.
∵A(1,0),B(0,3),
∴OB=3,OA=1.
∵∠BAD=90°,
∴∠BAO+∠DAF=90°,
又∵直角△ABO中,∠BAO+∠OBA=90°,
∴∠DAF=∠OBA,
在△OAB和△FDA中,
$\left\{\begin{array}{l}{∠DAF=∠OBA}\\{∠BOA=∠AFD}\\{AB=AD}\end{array}\right.$,
∴△OAB≌△FDA(AAS),
同理,△OAB≌△FDA≌△BEC,
∴AF=OB=EC=3,DF=OA=BE=1,
故D的坐標(biāo)是(4,1),C的坐標(biāo)是(3,4).代入y=$\frac{k}{4}$,
得:k=4,則函數(shù)的解析式是:y=$\frac{4}{x}$.
OE=4,
則C的縱坐標(biāo)是4,把y=4代入y=得:x=1.即G的坐標(biāo)是(1,4),
∴CG=2.
故答案為:2
點(diǎn)評(píng) 本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),待定系數(shù)法求函數(shù)的解析式,正確求得C、D的坐標(biāo)是關(guān)鍵,題目的綜合性較強(qiáng),難度不小,對(duì)學(xué)生的解題能力要求很高.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 45° | B. | 60° | C. | 75° | D. | 不能確定 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 120° | B. | 100° | C. | 90° | D. | 80° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 3個(gè) | B. | 4個(gè) | C. | 5個(gè) | D. | 6個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com