| A. | 10 | B. | 8 | C. | 6 | D. | 4 |
分析 連接OD,由直徑AB與弦CD垂直,根據(jù)垂徑定理得到E為CD的中點(diǎn),由CD的長求出DE的長,又由直徑的長求出半徑OD的長,在直角三角形ODE中,由DE及OD的長,利用勾股定理即可求出OE的長.
解答
解:如圖所示,連接OD.
∵弦CD⊥AB,AB為圓O的直徑,
∴E為CD的中點(diǎn),
又∵CD=16,
∴CE=DE=$\frac{1}{2}$CD=8,
又∵OD=$\frac{1}{2}$AB=10,
∵CD⊥AB,
∴∠OED=90°,
在Rt△ODE中,DE=8,OD=10,
根據(jù)勾股定理得:OE2+DE2=OD2,
∴OE=$\sqrt{O{D}^{2}-D{E}^{2}}$=6,
則OE的長度為6,
故選C.
點(diǎn)評 本題主要考查了垂徑定理,勾股定理,解答此類題常常利用垂徑定理由垂直得中點(diǎn),進(jìn)而由弦長的一半,弦心距及圓的半徑構(gòu)造直角三角形,利用勾股定理是解答此題的關(guān)鍵.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\left\{\begin{array}{l}{x=2}\\{y=4}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x=3}\\{y=6}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x=4}\\{y=3}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x=4}\\{y=2}\end{array}\right.$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com