分析 (1)連接OE,AE.只要證明AE⊥BC,EC=BE即可;
(2)作OM⊥AC于M.由四邊形OEDM是矩形,推出OE=DM=2,由AD=2+$\sqrt{3}$,推出AM=$\sqrt{3}$,在Rt△AOM中,cosA=$\frac{AM}{OA}$=$\frac{\sqrt{3}}{2}$,推出∠A=30°,在Rt△OEF中,EF=OE•tan30°=$\frac{2\sqrt{3}}{3}$,根據(jù)弧BE和BF、EF圍成的部分的面積S=S△OEF-S扇形OEB計算即可;
解答 (1)證明:連接OE,AE.
∵DF是⊙O的切線,
∴OE⊥DF,
∵AC⊥DF,
∴OE∥AC,
∵OA=OB,![]()
∴EC=EB,
∵AE⊥BC,
∴AC=AB.
(2)解:作OM⊥AC于M.
∵∠OMD=∠MDE=∠OED=90°,
∴四邊形OEDM是矩形,
∴OE=DM=2,
∵AD=2+$\sqrt{3}$,
∴AM=$\sqrt{3}$,
在Rt△AOM中,cosA=$\frac{AM}{OA}$=$\frac{\sqrt{3}}{2}$,
∴∠A=30°,
∵OE∥AC,
∴∠EOF=30°,
在Rt△OEF中,EF=OE•tan30°=$\frac{2\sqrt{3}}{3}$,
∴弧BE和BF、EF圍成的部分的面積S=S△OEF-S扇形OEB=$\frac{1}{2}$×2×$\frac{2\sqrt{3}}{3}$-$\frac{30•π•2}{180}$=$\frac{2\sqrt{3}}{3}$-$\frac{1}{3}$π.
點評 本題考查切線的性質(zhì)、扇形的面積公式、矩形的判定等知識,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識解決問題,學(xué)會添加常用輔助線,屬于中考?碱}型.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | mn | B. | $\frac{1}{2}$mn | C. | $\frac{1}{4}$mn | D. | $\sqrt{mn}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | B. | C. | D. |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com