欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

16.在△ABC中,AB=AC,∠A=60°,點D是線段BC的中點,∠EDF=120°,DE與線段AB相交于點E.DF與線段AC(或AC的延長線)相交于點F.
(1)如圖1,若DF⊥AC,垂足為F,AB=4,求BE的長;
(2)如圖2,將(1)中的∠EDF繞點D順時針旋轉(zhuǎn)一定的角度,DF仍與線段AC相交于點F.求證:BE+CF=$\frac{1}{2}$AB;
(3)如圖3,將(2)中的∠EDF繼續(xù)繞點D順時針旋轉(zhuǎn)一定的角度,使DF與線段AC的延長線相交于點F,作DN⊥AC于點N,若DN⊥AC于點N,若DN=FN,求證:BE+CF=$\sqrt{3}$(BE-CF).

分析 (1)如圖1,易求得∠B=60°,∠BED=90°,BD=2,然后運用三角函數(shù)的定義就可求出BE的值;
(2)過點D作DM⊥AB于M,作DN⊥AC于N,如圖2,易證△MBD≌△NCD,則有BM=CN,DM=DN,進而可證到△EMD≌△FND,則有EM=FN,就可得到BE+CF=BM+EM+CF=BM+FN+CF=BM+CN=2BM=2BD×cos60°=BD=$\frac{1}{2}$BC=$\frac{1}{2}$AB;
(3)過點D作DM⊥AB于M,如圖3.同(1)可得:∠B=∠ACD=60°,同(2)可得:BM=CN,DM=DN,EM=FN.由DN=FN可得DM=DN=FN=EM,從而可得BE+CF=BM+EM+CF=CN+DM+CF=NF+DM=2DM,BE-CF=BM+EM-CF=BM+NF-CF=BM+NC=2BM.然后在Rt△BMD中,運用三角函數(shù)就可得到DM=$\sqrt{3}$BM,即BE+CF=$\sqrt{3}$(BE-CF).

解答 解:(1)如圖1,
∵AB=AC,∠A=60°,
∴△ABC是等邊三角形,
∴∠B=∠C=60°,BC=AC=AB=4.
∵點D是線段BC的中點,
∴BD=DC=$\frac{1}{2}$BC=2.
∵DF⊥AC,即∠AFD=90°,
∴∠AED=360°-60°-90°-120°=90°,
∴∠BED=90°,
∴BE=BD×cos∠B=2×cos60°=2×$\frac{1}{2}$=1;

(2)過點D作DM⊥AB于M,作DN⊥AC于N,如圖2,
則有∠AMD=∠BMD=∠AND=∠CND=90°.
∵∠A=60°,
∴∠MDN=360°-60°-90°-90°=120°.
∵∠EDF=120°,
∴∠MDE=∠NDF.
在△MBD和△NCD中,
$\left\{\begin{array}{l}{∠BMD=∠CND}\\{∠B=∠C}\\{BD=CD}\end{array}\right.$,
∴△MBD≌△NCD,
∴BM=CN,DM=DN.
在△EMD和△FND中,
$\left\{\begin{array}{l}{∠EMD=∠FND}\\{DM=DN}\\{∠MDE=∠NDF}\end{array}\right.$,
∴△EMD≌△FND,
∴EM=FN,
∴BE+CF=BM+EM+CF=BM+FN+CF=BM+CN
=2BM=2BD×cos60°=BD=$\frac{1}{2}$BC=$\frac{1}{2}$AB;

(3)過點D作DM⊥AB于M,如圖3.
同(1)可得:∠B=∠ACD=60°.
同(2)可得:BM=CN,DM=DN,EM=FN.
∵DN=FN,
∴DM=DN=FN=EM,
∴BE+CF=BM+EM+CF=CN+DM+CF=NF+DM=2DM,
BE-CF=BM+EM-CF=BM+NF-CF=BM+NC=2BM.
在Rt△BMD中,DM=BM•tanB=$\sqrt{3}$BM,
∴BE+CF=$\sqrt{3}$(BE-CF).

點評 本題主要考查了等邊三角形的判定與性質(zhì)、四邊形的內(nèi)角和定理、全等三角形的判定與性質(zhì)、三角函數(shù)的定義、特殊角的三角函數(shù)值等知識,通過證明三角形全等得到BM=CN,DM=DN,EM=FN是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.某工廠在長方形材料上截取圓形配件,如圖,求此材料的利用率(圓形配件的總面積與材料面積的比,結(jié)果精確到1%,截取過程中不計損耗).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在銳角△ABC中,AC是最短邊,以AC的中點O為圓心,$\frac{1}{2}$AC長為半徑作⊙O,交BC于點E,過O作OD∥BC交⊙O于點D,連結(jié)AE、AD、DC.
(1)求證:D是$\widehat{AE}$的中點;
(2)求證:∠DAO=∠B+∠BAD;
(3)若$\frac{{S}_{△CEF}}{{S}_{△OCD}}$=$\frac{1}{2}$,且AC=6,求CF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

4.若十位上的數(shù)字比個位上的數(shù)字、百位上的數(shù)字都大的三位數(shù)叫做中高數(shù),如796就是一個“中高數(shù)”.若十位上數(shù)字為7,則從3、4、5、6、8、9中任選兩數(shù),與7組成“中高數(shù)”的概率是(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{2}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

11.某小區(qū)為了綠化環(huán)境,計劃分兩次購進A、B兩種花草,第一次分別購進A、B兩種花草30棵和15棵,共花費675元;第二次分別購進A、B兩種花草12棵和5棵.兩次共花費940元(兩次購進的A、B兩種花草價格均分別相同).
(1)A、B兩種花草每棵的價格分別是多少元?
(2)若購買A、B兩種花草共31棵,且B種花草的數(shù)量少于A種花草的數(shù)量的2倍,請你給出一種費用最省的方案,并求出該方案所需費用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

1.如圖,平面直角坐標(biāo)系的原點O是正方形ABCD的中心,頂點A,B的坐標(biāo)分別為(1,1),(-1,1),把正方形ABCD繞原點O逆時針旋轉(zhuǎn)45°得正方形A′B′C′D′,則正方形ABCD與正方形A′B′C′D′重疊部分所形成的正八邊形的邊長為2$\sqrt{2}$-2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

8.若點(x1,y1),(x2,y2),(x3,y3)都是反比例函數(shù)y=-$\frac{1}{x}$圖象上的點,并且y1<0<y2<y3,則下列各式中正確的是( 。
A.x1<x2<x3B.x1<x3<x2C.x2<x1<x3D.x2<x3<x1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.解不等式:$\frac{2x-1}{3}$≤$\frac{3x+2}{4}$-1,并把解集表示在數(shù)軸上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.先化簡,再求值:$\frac{{x}^{2}}{{x}^{2}+4x+4}$÷$\frac{x}{x+2}$-$\frac{x-1}{x+2}$,其中x=$\sqrt{2}$-1.

查看答案和解析>>

同步練習(xí)冊答案