分析 連結(jié)OB,如圖,先利用等腰三角形的性質(zhì),由OC=OB得到∠OBC=∠OCB=75°,再利用三角形外角性質(zhì)求出∠AOB=150°,接著根據(jù)切線的性質(zhì)得到∠OAP=∠OBP=90°,然后根據(jù)四邊形內(nèi)角和為360°可計算出∠P的度數(shù).
解答
解:連結(jié)OB,如圖,
∵OC=OB,
∴∠OBC=∠OCB=75°,
∴∠AOB=∠OBC+∠OCB=150°,
∵PA,PB是⊙O的切線,
∴OA⊥PA,OB⊥PB,
∴∠OAP=∠OBP=90°,
∴∠P=180°-∠AOB=30°.
故答案為30°.
點評 本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.運用切線的性質(zhì)來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構(gòu)造直角三角形解決有關(guān)問題.
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 120° | B. | 100° | C. | 80° | D. | 60° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | (a+2b)(a-b)=a2+ab-2b2 | B. | (a+b)2=a2+2ab+b2 | ||
| C. | a2-b2=(a+b)(a-b) | D. | (a-b)2=a2-2ab-b2. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 10° | B. | 12° | C. | 15° | D. | 20° |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com