分析 (1)連接OB,證明△AOP≌△BOP,得出對(duì)應(yīng)角相等,∠OBP=∠OAP=90°,即可得出結(jié)論;
(2)連接AB交OP于點(diǎn)M,過(guò)A作AB⊥BP于點(diǎn)Q,先求出cos∠BAP=$\frac{AM}{AP}$=$\frac{3}{5}$,令A(yù)M=3,AP=5,得出PM=4,AB=5,BP=6,根據(jù)面積求出AQ,再由銳角三角函數(shù)的定義即可得出結(jié)果.
解答 (1)證明:連接OB;如圖所示:![]()
∵PA是⊙O的切線,
∴OA⊥PA,
∴∠OAP=90°,
∵OP∥BC,
∴∠1=∠C,∠2=∠3,
∵OC=OB,
∴∠C=∠3,
∴∠1=∠2,
在△AOP和△BOP中,
$\left\{\begin{array}{l}{AO=BO}&{\;}\\{∠1=∠2}&{\;}\\{OP=OP}&{\;}\end{array}\right.$,
∴△AOP≌△BOP(SAS),
∴∠OBP=∠OAP=90°,
∴OB⊥BP,且OB為半徑,
∴PB是⊙O的切線;
(2)連接AB交OP于點(diǎn)M,過(guò)A作AQ⊥BP于點(diǎn)Q;如圖所示:
∵AP、BP為⊙O的切線,
∴PA=PB,
∵AO=BO,
∴OP垂直平分AB,
∵AC為直徑,
∴∠ABC=90°,
∴∠C+∠CAB=90°,
∵∠CAB+∠BAP=90°,
∴∠C=∠BAP,
∴cos∠BAP=cos∠ACB=$\frac{3}{5}$,
∵AB⊥OP,
∴∠AMP=90°,
∴cos∠BAP=$\frac{AM}{AP}$=$\frac{3}{5}$,
令A(yù)M=3,AP=5,
∴PM=4,AB=5,BP=6,
∴S△ABP=$\frac{1}{2}$AQ•BP=$\frac{1}{2}$AB•PM,
∴AQ=$\frac{AB•PM}{BP}$=$\frac{24}{5}$,
∵AQ⊥BP,
∴∠AQP=90°,
∴sin∠APB=$\frac{AQ}{AP}$=$\frac{\frac{24}{5}}{5}$=$\frac{24}{25}$.
點(diǎn)評(píng) 本題考查了切線的判定與性質(zhì)、全等三角形的判定與性質(zhì)、銳角三角函數(shù)的定義、三角形面積的計(jì)算方法;熟練掌握切線的判定與性質(zhì)進(jìn)行有關(guān)計(jì)算是解決問(wèn)題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 0個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | a3-a=a2 | B. | (-2a)2=4a2 | C. | x3•x-2=x-6 | D. | x6÷x3=x2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\left\{\begin{array}{l}{x≤2}\\{x>-1}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x≥2}\\{x<-1}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x>2}\\{x≤-1}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x<2}\\{x≥-1}\end{array}\right.$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1組 | B. | 2組 | C. | 3組 | D. | 4組 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 50°,30° | B. | 60°,30° | C. | 50°,20° | D. | 60°,20° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com