分析 分兩種情況進行討論:①弦AB和CD在圓心同側(cè);②弦AB和CD在圓心異側(cè);作出半徑和弦心距,利用勾股定理和垂徑定理求解即可,小心別漏解.
解答 解:①當弦AB和CD在圓心同側(cè)時,如圖1,![]()
∵AB=24cm,CD=10cm,
∴AE=12cm,CF=5cm,
∵OA=OC=13cm,
∴EO=5cm,OF=12cm,
∴EF=12-5=7cm;
②當弦AB和CD在圓心異側(cè)時,如圖2,
∵AB=24cm,CD=10cm,
∴AE=12cm,CF=5cm,
∵OA=OC=13cm,
∴EO=5cm,OF=12cm,
∴EF=OF+OE=17cm.
∴AB與CD之間的距離為7cm或17cm.
故答案為7或17.
點評 本題考查了勾股定理和垂徑定理的應用.此題難度適中,解題的關鍵是注意掌握數(shù)形結(jié)合思想與分類討論思想的應用,小心別漏解.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | $\frac{a+x}{a+y}$=$\frac{x}{y}$ | B. | $\frac{{x}^{3}}{{x}^{6}}$=$\frac{1}{{x}^{2}}$ | C. | $\frac{a+b}{a+b}$=0 | D. | $\frac{a}{ab+a}$=$\frac{1}{b+1}$ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | ($\frac{1}{3}$,-9) | B. | (3,1) | C. | (-1,3) | D. | (6,-$\frac{1}{2}$) |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com