分析 (1)根據(jù)翻折變換的性質(zhì)以及三角形內(nèi)角和定理以及平角的定義求出即可;
(2)根據(jù)三角形角平分線的性質(zhì)得出∠IBC+∠ICB=90°-$\frac{1}{2}$∠A,得出∠BIC的度數(shù)即可;
(3)根據(jù)翻折變換的性質(zhì)以及垂線的性質(zhì)得出,∠AFH+∠AGH=90°+90°=180°,進(jìn)而求出∠A=$\frac{1}{2}$(∠1+∠2),即可得出答案
解答 解:(1)∠1+∠2=2∠A;
理由:根據(jù)翻折的性質(zhì),∠ADE=$\frac{1}{2}$(180-∠1),∠AED=$\frac{1}{2}$(180-∠2),
∵∠A+∠ADE+∠AED=180°,
∴∠A+$\frac{1}{2}$(180-∠1)+$\frac{1}{2}$(180-∠2)=180°,
整理得2∠A=∠1+∠2;
(2)由(1)∠1+∠2=2∠A,得2∠A=130°,
∴∠A=65°.
∵IB平分∠ABC,IC平分∠ACB,
∴∠IBC+∠ICB=$\frac{1}{2}$(∠ABC+∠ACB)=$\frac{1}{2}$(180°-∠A)=90°-$\frac{1}{2}$∠A.
∴∠BIC=180°-(∠IBC+∠ICB)=180°-(90°-$\frac{1}{2}$∠A)=90°+$\frac{1}{2}$×65°=122.5°;
(3)∠BHC=180°-$\frac{1}{2}$(∠1+∠2).
理由:∵BF⊥AC,CG⊥AB,∴∠AFH+∠AGH=90°+90°=180°,∠FHG+∠A=180°,
∴∠BHC=∠FHG=180°-∠A,由(1)知∠1+∠2=2∠A.
∴∠A=$\frac{1}{2}$(∠1+∠2).
∴∠BHC=180°-$\frac{1}{2}$(∠1+∠2).
點(diǎn)評(píng) 此題主要考查了圖形的翻著變換的性質(zhì)以及角平分線的性質(zhì)和三角形內(nèi)角和定理,正確的利用翻折變換的性質(zhì)得出對(duì)應(yīng)關(guān)系是解決問題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 55° | B. | 110° | C. | 125° | D. | 150° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | SSS | |
| B. | ASA | |
| C. | AAS | |
| D. | 角平分線是哪個(gè)的點(diǎn)到這個(gè)角兩邊的距離相等 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1:2 | B. | 2:3 | C. | 1:3 | D. | 2:5 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com