分析 (1)由BE∥CD知∠1=∠3,根據(jù)∠2=∠3即可得∠1=∠2;
(2)連接EC、AC,由PC是⊙O的切線且BE∥DC,得∠1+∠4=90°,由∠A+∠2=90°且∠A=∠5知∠5+∠2=90°,根據(jù)∠1=∠2得∠4=∠5,從而證得△PBC∽△PCE即可;
(3)由PC2=PB•PE、BE-BP=PC=4求得BP=2、BE=6,作EF⊥CD可得PC=FE=4、FC=PE=8,再Rt△DEF≌Rt△BCP得DF=BP=2,據(jù)此得出CD的長(zhǎng)即可.
解答 解:(1)∵BE∥CD,
∴∠1=∠3,
又∵OB=OC,
∴∠2=∠3,
∴∠1=∠2,即BC平分∠ABP;
(2)如圖,連接EC、AC,![]()
∵PC是⊙O的切線,
∴∠PCD=90°,
又∵BE∥DC,
∴∠P=90°,
∴∠1+∠4=90°,
∵AB為⊙O直徑,
∴∠A+∠2=90°,
又∠A=∠5,
∴∠5+∠2=90°,
∵∠1=∠2,
∴∠5=∠4,
∵∠P=∠P,
∴△PBC∽△PCE,
∴$\frac{PC}{PE}$=$\frac{PB}{PC}$,即PC2=PB•PE;
(3)∵BE-BP=PC=4,
∴BE=4+BP,
∵PC2=PB•PE=PB•(PB+BE),
∴42=PB•(PB+4+PB),即PB2+2PB-8=0,
解得:PB=2,
則BE=4+PB=6,
∴PE=PB+BE=8,
作EF⊥CD于點(diǎn)F,
∵∠P=∠PCF=90°,
∴四邊形PCFE為矩形,
∴PC=FE=4,F(xiàn)C=PE=8,∠EFD=∠P=90°,
∵BE∥CD,
∴$\widehat{DE}$=$\widehat{BC}$,
∴DE=BC,
在Rt△DEF和Rt△BCP中,
∵$\left\{\begin{array}{l}{DE=BC}\\{EF=CP}\end{array}\right.$,
∴Rt△DEF≌Rt△BCP(HL),
∴DF=BP=2,
則CD=DF+CF=10,
∴⊙O的半徑為5.
點(diǎn)評(píng) 本題主要考查切線的性質(zhì)、相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì),熟練掌握平行線的性質(zhì)、切線的性質(zhì)、圓周角定理、相似三角形的判定與性質(zhì)及全等三角形的判定與性質(zhì)等知識(shí)點(diǎn)是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\sqrt{2}$ | B. | $\sqrt{\frac{1}{8}}$ | C. | $\sqrt{0.2}$ | D. | $\sqrt{27}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\sqrt{15}$ | B. | 2$\sqrt{5}$ | C. | 2$\sqrt{15}$ | D. | 8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{3\sqrt{10}}{2}$ | B. | $\frac{3\sqrt{10}}{5}$ | C. | $\frac{\sqrt{10}}{5}$ | D. | $\frac{3\sqrt{5}}{5}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 若a≠b,則a2≠b2 | B. | 若a>|b|,則a>b | C. | 若|a|=|b|,則a=b | D. | 若|a|>|b|,則a>b |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 3x-2x=1 | B. | (-a3)2=-a6 | C. | x6÷x2=x3 | D. | x3•x2=x5 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com