分析 (1)要求證:BF=BC只要證明∠CFB=∠FCB就可以,從而轉(zhuǎn)化為證明∠BCE=∠BDC就可以;
(2)已知AB=4cm,AD=3cm,就是已知BC=BF=3cm,CD=4cm,在直角△BCD中,根據(jù)三角形的面積等于$\frac{1}{2}$BD•CE=$\frac{1}{2}$BC•DC,就可以求出CE的長.要求CF的長,可以在直角△CEF中用勾股定理求得.其中EF=BF-BE,BE在直角△BCE中根據(jù)勾股定理就可以求出,由此解決問題.
解答 (1)證明:∵平行四邊形ABCD中,∠BCD=90°,
∴四邊形ABCD是矩形,
∴∠CDB+∠DBC=90°.
∵CE⊥BD,
∴∠DBC+∠ECB=90°.
∴∠ECB=∠CDB.
又∵∠DCF=∠ECF,
∴∠CFB=∠CDB+∠DCF=∠ECB+∠ECF=∠BCF.
∴BF=BC;
(2)解:在Rt△ABD中,由勾股定理得BD=$\sqrt{A{B}^{2}+A{D}^{2}}$=$\sqrt{{4}^{2}+{3}^{2}}$=5.
又∵BD•CE=BC•DC,
∴CE=$\frac{BC•DC}{BD}$=$\frac{12}{5}$.
∴BE=$\sqrt{B{C}^{2}-C{E}^{2}}$=$\sqrt{{3}^{2}-(\frac{12}{5})^{2}}$=$\frac{9}{5}$.
∴EF=BF-BE=3-$\frac{9}{5}$=$\frac{6}{5}$.
∴CF=$\sqrt{C{E}^{2}+E{F}^{2}}$=$\sqrt{(\frac{12}{5})^{2}+(\frac{6}{5})^{2}}$=$\frac{6\sqrt{5}}{5}$cm.
點(diǎn)評 本題考查矩形的判定與性質(zhì),等腰三角形的判定定理,等角對等邊,以及勾股定理,三角形面積計算公式的運(yùn)用,靈活運(yùn)用已知,理清思路,解決問題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | n=$\frac{1}{2}$ | B. | 0<n≤$\frac{3}{4}$ | C. | $\frac{1}{2}$≤n<1 | D. | 無法確定 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com