分析 由四邊形的內(nèi)角和為360度求出∠ADC+∠ABC度數(shù),由DF、BE分別為角平分線,利用角平分線定義及等量代換得到∠ABE+∠FDC為90度,再由直角三角形ADF兩銳角互余及∠ADF=∠FDC,利用等量代換得到一對(duì)同位角相等,利用同位角相等兩直線平行即可得證.
解答 證明:∵四邊形ABCD中,∠A=∠C=90°,
∴∠ADC+∠ABC=180°,
∵BE平分∠ABC交CD于E,DF平分∠ADC交AB于F,
∴∠ADF=∠FDC,∠ABE=∠CBE,
∴∠ABE+∠FDC=90°,
∵∠AFD+∠ADF=90°,∠ADF=∠FDC,
∴∠AFD=∠ABE,
∴BE∥DF.
點(diǎn)評(píng) 此題考查了平行線的判定,以及多邊形的內(nèi)角和,熟練掌握平行線的判定是解本題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | (a+$\sqrt$)2 | B. | (a-$\sqrt$)2 | C. | a-$\sqrt$ | D. | a+$\sqrt$ |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com